基于递推最小二乘和二次插值方法的无模型预测控制在电力-硬件在环仿真中的应用

Fajar Kurnia Al Farisi;Na-De Yang;Chu Ying Xiao;Po Hao Chen;Rifky Santoso;Kuo Lung Lian;Jan Meyer
{"title":"基于递推最小二乘和二次插值方法的无模型预测控制在电力-硬件在环仿真中的应用","authors":"Fajar Kurnia Al Farisi;Na-De Yang;Chu Ying Xiao;Po Hao Chen;Rifky Santoso;Kuo Lung Lian;Jan Meyer","doi":"10.1109/JESTIE.2025.3546022","DOIUrl":null,"url":null,"abstract":"Power-hardware-in-the-loop (PHIL) is a form of real-time simulation that allows a real power device to interact with a simulated power system. In PHIL simulation, the power equipment under test (PEUT) is connected to a real-time digital simulator via a power amplifier and an interface algorithm. A switched-mode power amplifier (SMPA) is commonly employed in the PHIL application due to its wide range of applications from small-scale to mega-watt ranges. However, it is known to have slow dynamic response. This article applies model-free predictive current control (MFPCC) based on the recursive least square method combined with Newton's quadratic interpolation to improve the dynamic response of a SMPA. The control algorithms are implemented in the SMPA in an actual PHIL setup to verify the performance of the proposed control method. The results show that the proposed MFPCC yields more accurate results, wider stability regions, and quicker response compared to the existing SMPA controllers in the PHIL. In addition, the proposed model is able to reproduce the harmonic distortions of a bus to the PEUT when the bus of the power network being simulated is subjected to harmonic distortions. Moreover, compared to some existing MFPCCs, the proposed controller can maintain PHIL stability even if multiple time step delays exist in the loop while the former yields instability.","PeriodicalId":100620,"journal":{"name":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","volume":"6 2","pages":"562-573"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-Free Predictive Control Based on Recursive Least Square and Quadratic Interpolation Methods Applied to Power-Hardware-in-The-Loop Simulation\",\"authors\":\"Fajar Kurnia Al Farisi;Na-De Yang;Chu Ying Xiao;Po Hao Chen;Rifky Santoso;Kuo Lung Lian;Jan Meyer\",\"doi\":\"10.1109/JESTIE.2025.3546022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power-hardware-in-the-loop (PHIL) is a form of real-time simulation that allows a real power device to interact with a simulated power system. In PHIL simulation, the power equipment under test (PEUT) is connected to a real-time digital simulator via a power amplifier and an interface algorithm. A switched-mode power amplifier (SMPA) is commonly employed in the PHIL application due to its wide range of applications from small-scale to mega-watt ranges. However, it is known to have slow dynamic response. This article applies model-free predictive current control (MFPCC) based on the recursive least square method combined with Newton's quadratic interpolation to improve the dynamic response of a SMPA. The control algorithms are implemented in the SMPA in an actual PHIL setup to verify the performance of the proposed control method. The results show that the proposed MFPCC yields more accurate results, wider stability regions, and quicker response compared to the existing SMPA controllers in the PHIL. In addition, the proposed model is able to reproduce the harmonic distortions of a bus to the PEUT when the bus of the power network being simulated is subjected to harmonic distortions. Moreover, compared to some existing MFPCCs, the proposed controller can maintain PHIL stability even if multiple time step delays exist in the loop while the former yields instability.\",\"PeriodicalId\":100620,\"journal\":{\"name\":\"IEEE Journal of Emerging and Selected Topics in Industrial Electronics\",\"volume\":\"6 2\",\"pages\":\"562-573\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Emerging and Selected Topics in Industrial Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10904216/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10904216/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电源硬件在环(PHIL)是实时仿真的一种形式,它允许真实的电力设备与模拟的电力系统进行交互。在PHIL仿真中,被测功率设备(PEUT)通过功率放大器和接口算法与实时数字模拟器连接。开关模式功率放大器(SMPA)通常用于PHIL应用,因为它的应用范围从小规模到兆瓦级范围广泛。然而,已知它具有缓慢的动态响应。本文采用基于递推最小二乘法和牛顿二次插值相结合的无模型预测电流控制(MFPCC)来改善SMPA的动态响应。在实际的PHIL设置中,在SMPA中实现了控制算法,以验证所提出的控制方法的性能。结果表明,与现有的SMPA控制器相比,所提出的MFPCC具有更精确的结果、更宽的稳定区域和更快的响应速度。此外,所提出的模型能够在被模拟电网母线受到谐波畸变时再现母线到PEUT的谐波畸变。此外,与现有的MFPCCs相比,即使存在多个时间步长延迟,该控制器也能保持PHIL稳定性,而前者会产生不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-Free Predictive Control Based on Recursive Least Square and Quadratic Interpolation Methods Applied to Power-Hardware-in-The-Loop Simulation
Power-hardware-in-the-loop (PHIL) is a form of real-time simulation that allows a real power device to interact with a simulated power system. In PHIL simulation, the power equipment under test (PEUT) is connected to a real-time digital simulator via a power amplifier and an interface algorithm. A switched-mode power amplifier (SMPA) is commonly employed in the PHIL application due to its wide range of applications from small-scale to mega-watt ranges. However, it is known to have slow dynamic response. This article applies model-free predictive current control (MFPCC) based on the recursive least square method combined with Newton's quadratic interpolation to improve the dynamic response of a SMPA. The control algorithms are implemented in the SMPA in an actual PHIL setup to verify the performance of the proposed control method. The results show that the proposed MFPCC yields more accurate results, wider stability regions, and quicker response compared to the existing SMPA controllers in the PHIL. In addition, the proposed model is able to reproduce the harmonic distortions of a bus to the PEUT when the bus of the power network being simulated is subjected to harmonic distortions. Moreover, compared to some existing MFPCCs, the proposed controller can maintain PHIL stability even if multiple time step delays exist in the loop while the former yields instability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信