一种带有侧信息的顺序推荐的偏好驱动共轭去噪方法

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaofei Zhu , Minqin Li , Zhou Yang
{"title":"一种带有侧信息的顺序推荐的偏好驱动共轭去噪方法","authors":"Xiaofei Zhu ,&nbsp;Minqin Li ,&nbsp;Zhou Yang","doi":"10.1016/j.ipm.2025.104174","DOIUrl":null,"url":null,"abstract":"<div><div>Sequential recommendation with side information aims to predict users’ preferred items based on user behavior sequences. Previous methods utilize attention mechanisms to capture user preferences from behavior sequences but often neglect individual behavioral variations, which introduce varying levels of frequency and random noise, thus compromising preference identification and integration. To address this issue, we propose a Preference-driven Conjugate Denoising Method (PCDM) for sequential recommendation with side information. The method employs a conjugate denoising transformer, consisting of a Fourier denoising module for frequency noise elimination and a variational inference module for random noise reduction, followed by a conjugate transformer that learns the user preference representations. Subsequently, it utilizes a preference-driven denoised fusion module to integrate the learned representations, aligning them with true user preferences while minimizing mixed noise interference. Experiments on four datasets, including Amazon Beauty, Sports, Toys, and Yelp, report average gains of 8.39% in Recall@10, 9.16% in Recall@20, 6.14% in NDCG@10, and 6.94% in NDCG@20 compared to the latest models.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 5","pages":"Article 104174"},"PeriodicalIF":7.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Preference-driven Conjugate Denoising Method for sequential recommendation with side information\",\"authors\":\"Xiaofei Zhu ,&nbsp;Minqin Li ,&nbsp;Zhou Yang\",\"doi\":\"10.1016/j.ipm.2025.104174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sequential recommendation with side information aims to predict users’ preferred items based on user behavior sequences. Previous methods utilize attention mechanisms to capture user preferences from behavior sequences but often neglect individual behavioral variations, which introduce varying levels of frequency and random noise, thus compromising preference identification and integration. To address this issue, we propose a Preference-driven Conjugate Denoising Method (PCDM) for sequential recommendation with side information. The method employs a conjugate denoising transformer, consisting of a Fourier denoising module for frequency noise elimination and a variational inference module for random noise reduction, followed by a conjugate transformer that learns the user preference representations. Subsequently, it utilizes a preference-driven denoised fusion module to integrate the learned representations, aligning them with true user preferences while minimizing mixed noise interference. Experiments on four datasets, including Amazon Beauty, Sports, Toys, and Yelp, report average gains of 8.39% in Recall@10, 9.16% in Recall@20, 6.14% in NDCG@10, and 6.94% in NDCG@20 compared to the latest models.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"62 5\",\"pages\":\"Article 104174\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457325001153\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325001153","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

带副信息的顺序推荐旨在基于用户行为序列预测用户的偏好项目。以前的方法利用注意机制从行为序列中捕获用户偏好,但往往忽略了个体行为的变化,这些变化会引入不同程度的频率和随机噪声,从而损害偏好识别和整合。为了解决这个问题,我们提出了一种偏好驱动的共轭去噪方法(PCDM),用于具有侧信息的顺序推荐。该方法采用共轭去噪变压器,由用于频率噪声消除的傅里叶去噪模块和用于随机降噪的变分推理模块组成,然后是学习用户偏好表示的共轭变压器。随后,它利用偏好驱动的去噪融合模块来整合学习到的表示,将它们与真实的用户偏好对齐,同时最大限度地减少混合噪声干扰。在亚马逊美妆、体育、玩具和Yelp等四个数据集上进行的实验显示,与最新模型相比,Recall@10的平均涨幅为8.39%,Recall@20为9.16%,NDCG@10为6.14%,NDCG@20为6.94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Preference-driven Conjugate Denoising Method for sequential recommendation with side information
Sequential recommendation with side information aims to predict users’ preferred items based on user behavior sequences. Previous methods utilize attention mechanisms to capture user preferences from behavior sequences but often neglect individual behavioral variations, which introduce varying levels of frequency and random noise, thus compromising preference identification and integration. To address this issue, we propose a Preference-driven Conjugate Denoising Method (PCDM) for sequential recommendation with side information. The method employs a conjugate denoising transformer, consisting of a Fourier denoising module for frequency noise elimination and a variational inference module for random noise reduction, followed by a conjugate transformer that learns the user preference representations. Subsequently, it utilizes a preference-driven denoised fusion module to integrate the learned representations, aligning them with true user preferences while minimizing mixed noise interference. Experiments on four datasets, including Amazon Beauty, Sports, Toys, and Yelp, report average gains of 8.39% in Recall@10, 9.16% in Recall@20, 6.14% in NDCG@10, and 6.94% in NDCG@20 compared to the latest models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信