Elisabetta Bassi , Vittorio Abbonante , Alicia Aguilar , Hana Raslova , James B. Bussel , Christian Andrea Di Buduo , Alessandro Malara , Alessandra Balduini
{"title":"铁螯合对血小板形成的剂量依赖性影响","authors":"Elisabetta Bassi , Vittorio Abbonante , Alicia Aguilar , Hana Raslova , James B. Bussel , Christian Andrea Di Buduo , Alessandro Malara , Alessandra Balduini","doi":"10.1016/j.bvth.2025.100060","DOIUrl":null,"url":null,"abstract":"<div><h3>Abstract</h3><div>Iron deficiency is associated with thrombocytosis in patients, although thrombocytopenia can occur in cases of severe iron deficiency anemia. Eltrombopag (EP), a thrombopoietic agent approved for immune thrombocytopenia, also acts as an iron chelator. Our study demonstrates that megakaryocytes (MKs) exhibit an increased requirement for iron as they mature and acquire the ability to form proplatelets and release platelets. Although low EP concentrations maintain MK functions, high EP concentrations disrupt iron homeostasis, reducing proplatelet formation. Mechanistically, EP-dependent iron chelation impairs MK cytoskeletal dynamics, induces higher extracellular signal–regulated kinase 1/2 (ERK1/2) signaling, and reduces posttranslational glutathionylation of tubulin protein. Addition of exogenous iron or oxidized glutathione to high-dose EP-treated MKs counteracts the negative effect on iron status and ERK1/2 signaling, thereby rescuing proplatelet formation. Overall, these data reveal the complex role of iron status on MK cytoskeletal dynamics and platelet biogenesis and may explain the varied clinical manifestations of iron deficiency on platelet counts.</div></div>","PeriodicalId":100190,"journal":{"name":"Blood Vessels, Thrombosis & Hemostasis","volume":"2 2","pages":"Article 100060"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dose-dependent effects of eltrombopag iron chelation on platelet formation\",\"authors\":\"Elisabetta Bassi , Vittorio Abbonante , Alicia Aguilar , Hana Raslova , James B. Bussel , Christian Andrea Di Buduo , Alessandro Malara , Alessandra Balduini\",\"doi\":\"10.1016/j.bvth.2025.100060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Abstract</h3><div>Iron deficiency is associated with thrombocytosis in patients, although thrombocytopenia can occur in cases of severe iron deficiency anemia. Eltrombopag (EP), a thrombopoietic agent approved for immune thrombocytopenia, also acts as an iron chelator. Our study demonstrates that megakaryocytes (MKs) exhibit an increased requirement for iron as they mature and acquire the ability to form proplatelets and release platelets. Although low EP concentrations maintain MK functions, high EP concentrations disrupt iron homeostasis, reducing proplatelet formation. Mechanistically, EP-dependent iron chelation impairs MK cytoskeletal dynamics, induces higher extracellular signal–regulated kinase 1/2 (ERK1/2) signaling, and reduces posttranslational glutathionylation of tubulin protein. Addition of exogenous iron or oxidized glutathione to high-dose EP-treated MKs counteracts the negative effect on iron status and ERK1/2 signaling, thereby rescuing proplatelet formation. Overall, these data reveal the complex role of iron status on MK cytoskeletal dynamics and platelet biogenesis and may explain the varied clinical manifestations of iron deficiency on platelet counts.</div></div>\",\"PeriodicalId\":100190,\"journal\":{\"name\":\"Blood Vessels, Thrombosis & Hemostasis\",\"volume\":\"2 2\",\"pages\":\"Article 100060\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood Vessels, Thrombosis & Hemostasis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950327225000178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Vessels, Thrombosis & Hemostasis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950327225000178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dose-dependent effects of eltrombopag iron chelation on platelet formation
Abstract
Iron deficiency is associated with thrombocytosis in patients, although thrombocytopenia can occur in cases of severe iron deficiency anemia. Eltrombopag (EP), a thrombopoietic agent approved for immune thrombocytopenia, also acts as an iron chelator. Our study demonstrates that megakaryocytes (MKs) exhibit an increased requirement for iron as they mature and acquire the ability to form proplatelets and release platelets. Although low EP concentrations maintain MK functions, high EP concentrations disrupt iron homeostasis, reducing proplatelet formation. Mechanistically, EP-dependent iron chelation impairs MK cytoskeletal dynamics, induces higher extracellular signal–regulated kinase 1/2 (ERK1/2) signaling, and reduces posttranslational glutathionylation of tubulin protein. Addition of exogenous iron or oxidized glutathione to high-dose EP-treated MKs counteracts the negative effect on iron status and ERK1/2 signaling, thereby rescuing proplatelet formation. Overall, these data reveal the complex role of iron status on MK cytoskeletal dynamics and platelet biogenesis and may explain the varied clinical manifestations of iron deficiency on platelet counts.