轮式移动机器人滑倒轨迹跟踪控制

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jianjun Bai , Chen Liu , Shengzhe Zhou , Yun Chen , Xujun Li
{"title":"轮式移动机器人滑倒轨迹跟踪控制","authors":"Jianjun Bai ,&nbsp;Chen Liu ,&nbsp;Shengzhe Zhou ,&nbsp;Yun Chen ,&nbsp;Xujun Li","doi":"10.1016/j.neucom.2025.130203","DOIUrl":null,"url":null,"abstract":"<div><div>The trajectory tracking control for wheeled mobile robots (WMRs) subject to longitudinal slipping and lateral skidding is studied in this paper. Both the slipping and skidding are considered explicitly at the kinematic level. A new Radial Basis Function Neural Network (RBFNN) based disturbance observer is proposed to estimate the slipping and skidding, and the slipping and skidding estimation errors can be made arbitrarily small. By integrating the disturbance observer, a kinematic controller is designed based on a new Lyapunov function. Then the dynamic controller is designed and the uniform ultimate boundedness of the overall closed-loop system is proved. Finally, simulations are given to verify the effectiveness and advantages of the method proposed in this paper.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"638 ","pages":"Article 130203"},"PeriodicalIF":6.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trajectory tracking control for wheeled mobile robot subject to slipping and skidding\",\"authors\":\"Jianjun Bai ,&nbsp;Chen Liu ,&nbsp;Shengzhe Zhou ,&nbsp;Yun Chen ,&nbsp;Xujun Li\",\"doi\":\"10.1016/j.neucom.2025.130203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The trajectory tracking control for wheeled mobile robots (WMRs) subject to longitudinal slipping and lateral skidding is studied in this paper. Both the slipping and skidding are considered explicitly at the kinematic level. A new Radial Basis Function Neural Network (RBFNN) based disturbance observer is proposed to estimate the slipping and skidding, and the slipping and skidding estimation errors can be made arbitrarily small. By integrating the disturbance observer, a kinematic controller is designed based on a new Lyapunov function. Then the dynamic controller is designed and the uniform ultimate boundedness of the overall closed-loop system is proved. Finally, simulations are given to verify the effectiveness and advantages of the method proposed in this paper.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"638 \",\"pages\":\"Article 130203\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225008756\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225008756","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

研究了轮式移动机器人纵向滑移和横向滑移的轨迹跟踪控制问题。滑移和打滑都在运动学水平上被明确地考虑。提出了一种新的基于径向基函数神经网络(RBFNN)的扰动观测器来估计滑动和打滑,并且可以使滑动和打滑的估计误差达到任意小。通过对扰动观测器的集成,设计了一种基于新的李雅普诺夫函数的运动控制器。然后设计了动态控制器,证明了整个闭环系统的一致极限有界性。最后通过仿真验证了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory tracking control for wheeled mobile robot subject to slipping and skidding
The trajectory tracking control for wheeled mobile robots (WMRs) subject to longitudinal slipping and lateral skidding is studied in this paper. Both the slipping and skidding are considered explicitly at the kinematic level. A new Radial Basis Function Neural Network (RBFNN) based disturbance observer is proposed to estimate the slipping and skidding, and the slipping and skidding estimation errors can be made arbitrarily small. By integrating the disturbance observer, a kinematic controller is designed based on a new Lyapunov function. Then the dynamic controller is designed and the uniform ultimate boundedness of the overall closed-loop system is proved. Finally, simulations are given to verify the effectiveness and advantages of the method proposed in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信