Argyri Kardamaki , Athanassios Nikolakopoulos , Mihalis Kavousanakis , Philip Doganis , Matt Jellicoe , William Stokes , Vesa Hongisto , Matthew Simmons , Thomas W. Chamberlain , Nikil Kapur , Roland Grafström , Andrew Nelson , Haralambos Sarimveis
{"title":"SABYDOMA安全过程控制框架,用于生产功能,安全和可持续的纳米材料","authors":"Argyri Kardamaki , Athanassios Nikolakopoulos , Mihalis Kavousanakis , Philip Doganis , Matt Jellicoe , William Stokes , Vesa Hongisto , Matthew Simmons , Thomas W. Chamberlain , Nikil Kapur , Roland Grafström , Andrew Nelson , Haralambos Sarimveis","doi":"10.1016/j.compchemeng.2025.109113","DOIUrl":null,"url":null,"abstract":"<div><div>The production of nanomaterials (NMs) has gained significant attention due to their unique properties and versatile applications in fields such as medicine, energy, and electronics. However, ensuring the large-scale synthesis of safe and sustainable NMs while maintaining their functionality remains a critical challenge. This study introduces the Safety by Process Control (SbPC) framework, a novel methodology integrating dynamic first-principles modeling, Model Predictive Control (MPC), and real-time safety monitoring. The framework employs a physics-based population balance model with a Method Of Moments (MOM) approximation to predict the evolution of key NM properties. A toxicity inferential sensor, built on experimental data, is integrated to facilitate real-time hazard assessment. The efficiency of the proposed framework is demonstrated using a continuous silver nanoparticle (Ag NP) production system as a case study. The proposed approach ensures the production of high-quality, safe, and sustainable NMs, aligning with Safe and Sustainable by Design (SSbD) principles and addressing gaps in current NM manufacturing processes. The framework’s adaptability to other NM types highlights its potential as a transformative tool for sustainable nanotechnology.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"199 ","pages":"Article 109113"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The SABYDOMA Safety by Process Control framework for the production of functional, safe and sustainable nanomaterials\",\"authors\":\"Argyri Kardamaki , Athanassios Nikolakopoulos , Mihalis Kavousanakis , Philip Doganis , Matt Jellicoe , William Stokes , Vesa Hongisto , Matthew Simmons , Thomas W. Chamberlain , Nikil Kapur , Roland Grafström , Andrew Nelson , Haralambos Sarimveis\",\"doi\":\"10.1016/j.compchemeng.2025.109113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The production of nanomaterials (NMs) has gained significant attention due to their unique properties and versatile applications in fields such as medicine, energy, and electronics. However, ensuring the large-scale synthesis of safe and sustainable NMs while maintaining their functionality remains a critical challenge. This study introduces the Safety by Process Control (SbPC) framework, a novel methodology integrating dynamic first-principles modeling, Model Predictive Control (MPC), and real-time safety monitoring. The framework employs a physics-based population balance model with a Method Of Moments (MOM) approximation to predict the evolution of key NM properties. A toxicity inferential sensor, built on experimental data, is integrated to facilitate real-time hazard assessment. The efficiency of the proposed framework is demonstrated using a continuous silver nanoparticle (Ag NP) production system as a case study. The proposed approach ensures the production of high-quality, safe, and sustainable NMs, aligning with Safe and Sustainable by Design (SSbD) principles and addressing gaps in current NM manufacturing processes. The framework’s adaptability to other NM types highlights its potential as a transformative tool for sustainable nanotechnology.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"199 \",\"pages\":\"Article 109113\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425001176\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425001176","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The SABYDOMA Safety by Process Control framework for the production of functional, safe and sustainable nanomaterials
The production of nanomaterials (NMs) has gained significant attention due to their unique properties and versatile applications in fields such as medicine, energy, and electronics. However, ensuring the large-scale synthesis of safe and sustainable NMs while maintaining their functionality remains a critical challenge. This study introduces the Safety by Process Control (SbPC) framework, a novel methodology integrating dynamic first-principles modeling, Model Predictive Control (MPC), and real-time safety monitoring. The framework employs a physics-based population balance model with a Method Of Moments (MOM) approximation to predict the evolution of key NM properties. A toxicity inferential sensor, built on experimental data, is integrated to facilitate real-time hazard assessment. The efficiency of the proposed framework is demonstrated using a continuous silver nanoparticle (Ag NP) production system as a case study. The proposed approach ensures the production of high-quality, safe, and sustainable NMs, aligning with Safe and Sustainable by Design (SSbD) principles and addressing gaps in current NM manufacturing processes. The framework’s adaptability to other NM types highlights its potential as a transformative tool for sustainable nanotechnology.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.