Noemi Pisani , Filomena Abate , Anna Rosa Avallone , Paolo Barone , Mario Cesarelli , Francesco Amato , Marina Picillo , Carlo Ricciardi
{"title":"放射组学方法从MR图像开始区分进行性核上性麻痹理查森综合征与其他表型","authors":"Noemi Pisani , Filomena Abate , Anna Rosa Avallone , Paolo Barone , Mario Cesarelli , Francesco Amato , Marina Picillo , Carlo Ricciardi","doi":"10.1016/j.cmpb.2025.108778","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objective</h3><div>Progressive Supranuclear Palsy (PSP) is an uncommon neurodegenerative disorder with different clinical onset, including Richardson's syndrome (PSP-RS) and other variant phenotypes (vPSP). Recognising the clinical progression of different phenotypes would enhance the accuracy of detection and treatment of PSP. The study goal was to identify radiomic biomarkers for distinguishing PSP phenotypes extracted from T1-weighted magnetic resonance images (MRI).</div></div><div><h3>Methods</h3><div>Forty PSP patients (20 PSP-RS and 20 vPSP) took part in the present work. Radiomic features were collected from 21 regions of interest (ROIs) mainly from frontal cortex, supratentorial white matter, basal nuclei, brainstem, cerebellum, 3rd and 4th ventricles. After features selection, three tree-based machine learning (ML) classifiers were implemented to classify PSP phenotypes.</div></div><div><h3>Results</h3><div>10 out of 21 ROIs performed best about sensitivity, specificity, accuracy and area under the receiver operating characteristic curve (AUCROC). Particularly, features extracted from the pons region obtained the best accuracy (0.92) and AUCROC (0.83) values while by using the other 10 ROIs, evaluation metrics range from 0.67 to 0.83. Eight features of the Gray Level Dependence Matrix were recurrently extracted for the 10 ROIs. Furthermore, by combining these ROIs, the results exceeded 0.83 in phenotypes classification and the selected areas were brain stem, pons, occipital white matter, precentral gyrus and thalamus regions.</div></div><div><h3>Conclusions</h3><div>Based on the achieved results, our proposed approach could represent a promising tool for distinguishing PSP-RS from vPSP.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"266 ","pages":"Article 108778"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A radiomics approach to distinguish Progressive Supranuclear Palsy Richardson's syndrome from other phenotypes starting from MR images\",\"authors\":\"Noemi Pisani , Filomena Abate , Anna Rosa Avallone , Paolo Barone , Mario Cesarelli , Francesco Amato , Marina Picillo , Carlo Ricciardi\",\"doi\":\"10.1016/j.cmpb.2025.108778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and objective</h3><div>Progressive Supranuclear Palsy (PSP) is an uncommon neurodegenerative disorder with different clinical onset, including Richardson's syndrome (PSP-RS) and other variant phenotypes (vPSP). Recognising the clinical progression of different phenotypes would enhance the accuracy of detection and treatment of PSP. The study goal was to identify radiomic biomarkers for distinguishing PSP phenotypes extracted from T1-weighted magnetic resonance images (MRI).</div></div><div><h3>Methods</h3><div>Forty PSP patients (20 PSP-RS and 20 vPSP) took part in the present work. Radiomic features were collected from 21 regions of interest (ROIs) mainly from frontal cortex, supratentorial white matter, basal nuclei, brainstem, cerebellum, 3rd and 4th ventricles. After features selection, three tree-based machine learning (ML) classifiers were implemented to classify PSP phenotypes.</div></div><div><h3>Results</h3><div>10 out of 21 ROIs performed best about sensitivity, specificity, accuracy and area under the receiver operating characteristic curve (AUCROC). Particularly, features extracted from the pons region obtained the best accuracy (0.92) and AUCROC (0.83) values while by using the other 10 ROIs, evaluation metrics range from 0.67 to 0.83. Eight features of the Gray Level Dependence Matrix were recurrently extracted for the 10 ROIs. Furthermore, by combining these ROIs, the results exceeded 0.83 in phenotypes classification and the selected areas were brain stem, pons, occipital white matter, precentral gyrus and thalamus regions.</div></div><div><h3>Conclusions</h3><div>Based on the achieved results, our proposed approach could represent a promising tool for distinguishing PSP-RS from vPSP.</div></div>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":\"266 \",\"pages\":\"Article 108778\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169260725001956\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725001956","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A radiomics approach to distinguish Progressive Supranuclear Palsy Richardson's syndrome from other phenotypes starting from MR images
Background and objective
Progressive Supranuclear Palsy (PSP) is an uncommon neurodegenerative disorder with different clinical onset, including Richardson's syndrome (PSP-RS) and other variant phenotypes (vPSP). Recognising the clinical progression of different phenotypes would enhance the accuracy of detection and treatment of PSP. The study goal was to identify radiomic biomarkers for distinguishing PSP phenotypes extracted from T1-weighted magnetic resonance images (MRI).
Methods
Forty PSP patients (20 PSP-RS and 20 vPSP) took part in the present work. Radiomic features were collected from 21 regions of interest (ROIs) mainly from frontal cortex, supratentorial white matter, basal nuclei, brainstem, cerebellum, 3rd and 4th ventricles. After features selection, three tree-based machine learning (ML) classifiers were implemented to classify PSP phenotypes.
Results
10 out of 21 ROIs performed best about sensitivity, specificity, accuracy and area under the receiver operating characteristic curve (AUCROC). Particularly, features extracted from the pons region obtained the best accuracy (0.92) and AUCROC (0.83) values while by using the other 10 ROIs, evaluation metrics range from 0.67 to 0.83. Eight features of the Gray Level Dependence Matrix were recurrently extracted for the 10 ROIs. Furthermore, by combining these ROIs, the results exceeded 0.83 in phenotypes classification and the selected areas were brain stem, pons, occipital white matter, precentral gyrus and thalamus regions.
Conclusions
Based on the achieved results, our proposed approach could represent a promising tool for distinguishing PSP-RS from vPSP.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.