动力学和分子间相互作用诱导的碰撞纳米液滴形态演化

IF 5.3 2区 化学 Q2 CHEMISTRY, PHYSICAL
Niming Peng , Lanlan Wang , Rong Wei , A. Hubao , Guojun Li , Wei Jiang , Weitao Jiang , Hongzhong Liu
{"title":"动力学和分子间相互作用诱导的碰撞纳米液滴形态演化","authors":"Niming Peng ,&nbsp;Lanlan Wang ,&nbsp;Rong Wei ,&nbsp;A. Hubao ,&nbsp;Guojun Li ,&nbsp;Wei Jiang ,&nbsp;Weitao Jiang ,&nbsp;Hongzhong Liu","doi":"10.1016/j.molliq.2025.127574","DOIUrl":null,"url":null,"abstract":"<div><div>Droplet impact on moving substrates is a prevalent phenomenon in grating antifouling, nanoimprint lithography, and inkjet printing. However, how substrate surface properties and dynamic scenarios modify the droplet impact process, especially at the nanoscale, is unclear. Hence, the water nanodroplets impact dynamic solid surfaces is investigated through molecular dynamics simulations in this work. A wide regime of morphologic evolution modes of impinging behaviors, from wetting-spreading (WS) to impact-breakup (IB), have been distinguished by altering normal impact velocities, substrate surface properties, and substrate moving velocities. Four surface properties are normalized by the potential well depth of average Lennard-Jones (LJ) potential energy field (<em>ε</em><sub>a</sub>) from intermolecular interactions and surface topographies. As a boundary condition, five impact equilibrium states are summarized under different <em>ε</em><sub>a</sub> with a wide range of dynamic conditions. We demonstrate that the crucial configuration of droplet bounce is a function of the normal Reynolds number (<em>Re</em><sub>n</sub>) and the tangential Weber number (<em>We</em><sub>t</sub>), which may be expressed as: <em>k</em><sub>0</sub><em>We</em><sub>t</sub><em>Re</em><sub>n</sub> + <em>k</em><sub>1</sub><em>We</em><sub>t</sub> + <em>k</em><sub>2</sub><em>Re</em><sub>n</sub> + <em>k</em><sub>3</sub> = 0. This criterion gives a good prediction for the bounce of water nanodroplet after impacting on a substrate with surface properties (<em>ε</em><sub>a</sub>) and dynamic factors coupled. Our findings and results enhance the understanding of the bouncing of impact nanodroplets on dynamic substrates and provide a strategy for grating antifouling, photoresist-drop dispensing in nanoimprint lithography, and anti-icing, which are associated with managing nanodroplet impact behaviors.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"429 ","pages":"Article 127574"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The morphological evolution of impact nanodroplets induced by dynamics and intermolecular interactions\",\"authors\":\"Niming Peng ,&nbsp;Lanlan Wang ,&nbsp;Rong Wei ,&nbsp;A. Hubao ,&nbsp;Guojun Li ,&nbsp;Wei Jiang ,&nbsp;Weitao Jiang ,&nbsp;Hongzhong Liu\",\"doi\":\"10.1016/j.molliq.2025.127574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Droplet impact on moving substrates is a prevalent phenomenon in grating antifouling, nanoimprint lithography, and inkjet printing. However, how substrate surface properties and dynamic scenarios modify the droplet impact process, especially at the nanoscale, is unclear. Hence, the water nanodroplets impact dynamic solid surfaces is investigated through molecular dynamics simulations in this work. A wide regime of morphologic evolution modes of impinging behaviors, from wetting-spreading (WS) to impact-breakup (IB), have been distinguished by altering normal impact velocities, substrate surface properties, and substrate moving velocities. Four surface properties are normalized by the potential well depth of average Lennard-Jones (LJ) potential energy field (<em>ε</em><sub>a</sub>) from intermolecular interactions and surface topographies. As a boundary condition, five impact equilibrium states are summarized under different <em>ε</em><sub>a</sub> with a wide range of dynamic conditions. We demonstrate that the crucial configuration of droplet bounce is a function of the normal Reynolds number (<em>Re</em><sub>n</sub>) and the tangential Weber number (<em>We</em><sub>t</sub>), which may be expressed as: <em>k</em><sub>0</sub><em>We</em><sub>t</sub><em>Re</em><sub>n</sub> + <em>k</em><sub>1</sub><em>We</em><sub>t</sub> + <em>k</em><sub>2</sub><em>Re</em><sub>n</sub> + <em>k</em><sub>3</sub> = 0. This criterion gives a good prediction for the bounce of water nanodroplet after impacting on a substrate with surface properties (<em>ε</em><sub>a</sub>) and dynamic factors coupled. Our findings and results enhance the understanding of the bouncing of impact nanodroplets on dynamic substrates and provide a strategy for grating antifouling, photoresist-drop dispensing in nanoimprint lithography, and anti-icing, which are associated with managing nanodroplet impact behaviors.</div></div>\",\"PeriodicalId\":371,\"journal\":{\"name\":\"Journal of Molecular Liquids\",\"volume\":\"429 \",\"pages\":\"Article 127574\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Liquids\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016773222500741X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016773222500741X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在光栅防污、纳米压印和喷墨印刷中,液滴对移动基板的冲击是一个普遍的现象。然而,衬底表面特性和动态场景如何改变液滴撞击过程,特别是在纳米尺度上,尚不清楚。因此,本研究通过分子动力学模拟研究了纳米水滴对动态固体表面的冲击。通过改变正常的冲击速度、基材表面特性和基材移动速度,可以区分出从润湿-扩散(WS)到冲击-破裂(IB)等多种冲击行为的形态演化模式。用分子间相互作用和表面形貌的平均Lennard-Jones (LJ)势能场(εa)势井深度归一化了四种表面性质。作为边界条件,总结了不同εa条件下的5种冲击平衡状态。我们证明了液滴弹跳的关键构型是法向雷诺数(Ren)和切向韦伯数(Wet)的函数,可以表示为:k0WetRen + k1Wet + k2Ren + k3 = 0。在表面性质εa和动力因素耦合的情况下,该判据可以很好地预测纳米水滴撞击基底后的弹跳。我们的发现和结果增强了对冲击纳米液滴在动态衬底上的弹跳的理解,并为光栅防污、纳米压印光刻中的光阻滴点胶和防结冰提供了策略,这些都与控制纳米液滴的冲击行为有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The morphological evolution of impact nanodroplets induced by dynamics and intermolecular interactions

The morphological evolution of impact nanodroplets induced by dynamics and intermolecular interactions
Droplet impact on moving substrates is a prevalent phenomenon in grating antifouling, nanoimprint lithography, and inkjet printing. However, how substrate surface properties and dynamic scenarios modify the droplet impact process, especially at the nanoscale, is unclear. Hence, the water nanodroplets impact dynamic solid surfaces is investigated through molecular dynamics simulations in this work. A wide regime of morphologic evolution modes of impinging behaviors, from wetting-spreading (WS) to impact-breakup (IB), have been distinguished by altering normal impact velocities, substrate surface properties, and substrate moving velocities. Four surface properties are normalized by the potential well depth of average Lennard-Jones (LJ) potential energy field (εa) from intermolecular interactions and surface topographies. As a boundary condition, five impact equilibrium states are summarized under different εa with a wide range of dynamic conditions. We demonstrate that the crucial configuration of droplet bounce is a function of the normal Reynolds number (Ren) and the tangential Weber number (Wet), which may be expressed as: k0WetRen + k1Wet + k2Ren + k3 = 0. This criterion gives a good prediction for the bounce of water nanodroplet after impacting on a substrate with surface properties (εa) and dynamic factors coupled. Our findings and results enhance the understanding of the bouncing of impact nanodroplets on dynamic substrates and provide a strategy for grating antifouling, photoresist-drop dispensing in nanoimprint lithography, and anti-icing, which are associated with managing nanodroplet impact behaviors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Liquids
Journal of Molecular Liquids 化学-物理:原子、分子和化学物理
CiteScore
10.30
自引率
16.70%
发文量
2597
审稿时长
78 days
期刊介绍: The journal includes papers in the following areas: – Simple organic liquids and mixtures – Ionic liquids – Surfactant solutions (including micelles and vesicles) and liquid interfaces – Colloidal solutions and nanoparticles – Thermotropic and lyotropic liquid crystals – Ferrofluids – Water, aqueous solutions and other hydrogen-bonded liquids – Lubricants, polymer solutions and melts – Molten metals and salts – Phase transitions and critical phenomena in liquids and confined fluids – Self assembly in complex liquids.– Biomolecules in solution The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include: – Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.) – Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.) – Light scattering (Rayleigh, Brillouin, PCS, etc.) – Dielectric relaxation – X-ray and neutron scattering and diffraction. Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信