基于广义机器学习势的晶界偏析谱

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nutth Tuchinda , Christopher A. Schuh
{"title":"基于广义机器学习势的晶界偏析谱","authors":"Nutth Tuchinda ,&nbsp;Christopher A. Schuh","doi":"10.1016/j.scriptamat.2025.116682","DOIUrl":null,"url":null,"abstract":"<div><div>Modeling solute segregation to grain boundaries at near first-principles accuracy is a daunting task, particularly at finite concentrations and temperatures that require accurate assessments of solute-solute interactions and excess vibrational entropy of segregation that are computationally intensive. Here, we apply a generalized machine learning potential for 16 elements, including Ag, Al, Au, Cr, Cu, Mg, Mo, Ni, Pb, Pd, Pt, Ta, Ti, V, W and Zr, to provide a self-consistent spectral database for all of these energetic components in 240 binary alloy polycrystals. The segregation spectra are validated against prior quantum-accurate simulations and show improved predictive ability with some existing atom probe tomography experimental data.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"264 ","pages":"Article 116682"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grain boundary segregation spectra from a generalized machine-learning potential\",\"authors\":\"Nutth Tuchinda ,&nbsp;Christopher A. Schuh\",\"doi\":\"10.1016/j.scriptamat.2025.116682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modeling solute segregation to grain boundaries at near first-principles accuracy is a daunting task, particularly at finite concentrations and temperatures that require accurate assessments of solute-solute interactions and excess vibrational entropy of segregation that are computationally intensive. Here, we apply a generalized machine learning potential for 16 elements, including Ag, Al, Au, Cr, Cu, Mg, Mo, Ni, Pb, Pd, Pt, Ta, Ti, V, W and Zr, to provide a self-consistent spectral database for all of these energetic components in 240 binary alloy polycrystals. The segregation spectra are validated against prior quantum-accurate simulations and show improved predictive ability with some existing atom probe tomography experimental data.</div></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"264 \",\"pages\":\"Article 116682\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646225001459\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225001459","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以接近第一原理的精度建立溶质偏析到晶界的模型是一项艰巨的任务,尤其是在有限浓度和温度条件下,需要对溶质-溶质相互作用和偏析的过量振动熵进行精确评估,而这需要大量的计算。在此,我们对包括 Ag、Al、Au、Cr、Cu、Mg、Mo、Ni、Pb、Pd、Pt、Ta、Ti、V、W 和 Zr 在内的 16 种元素应用了广义机器学习势,为 240 种二元合金多晶体中的所有这些高能成分提供了自洽的光谱数据库。偏析光谱与之前的量子精确模拟进行了验证,并与一些现有的原子探针层析成像实验数据进行了对比,显示出更好的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Grain boundary segregation spectra from a generalized machine-learning potential

Grain boundary segregation spectra from a generalized machine-learning potential
Modeling solute segregation to grain boundaries at near first-principles accuracy is a daunting task, particularly at finite concentrations and temperatures that require accurate assessments of solute-solute interactions and excess vibrational entropy of segregation that are computationally intensive. Here, we apply a generalized machine learning potential for 16 elements, including Ag, Al, Au, Cr, Cu, Mg, Mo, Ni, Pb, Pd, Pt, Ta, Ti, V, W and Zr, to provide a self-consistent spectral database for all of these energetic components in 240 binary alloy polycrystals. The segregation spectra are validated against prior quantum-accurate simulations and show improved predictive ability with some existing atom probe tomography experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信