修正Korteweg-de Vries方程中外力作用下孤子的弹簧质量行为

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Marcelo V. Flamarion , Efim Pelinovsky , Ioann Melnikov
{"title":"修正Korteweg-de Vries方程中外力作用下孤子的弹簧质量行为","authors":"Marcelo V. Flamarion ,&nbsp;Efim Pelinovsky ,&nbsp;Ioann Melnikov","doi":"10.1016/j.chaos.2025.116422","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the interaction of solitons with an external periodic field within the framework of the modified Korteweg–de Vries (mKdV) equation. In the case of small perturbation a simple dynamical system is used to describe the soliton behavior. Equilibrium points of this dynamical system are computed when the external force travels at a constant speed. Assuming that the external force moves with sinusoidal speed, we demonstrate that the soliton behavior is qualitatively similar to the constant-speed case. Besides, a resonant frequency is derived from the asymptotic theory without using the classical broad force approximation. The results obtained from the dynamical system are compared with fully nonlinear direct numerical simulations, which reveal that the soliton solution exhibits spiral-like behavior in the soliton amplitude versus soliton phase space. Moreover, when the external force oscillates at the resonant frequency, the trajectories in the soliton phase versus soliton amplitude exhibit chaotic behavior.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":"Article 116422"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spring–mass behavior of solitons under the influence of an external force field within the modified Korteweg–de Vries equation\",\"authors\":\"Marcelo V. Flamarion ,&nbsp;Efim Pelinovsky ,&nbsp;Ioann Melnikov\",\"doi\":\"10.1016/j.chaos.2025.116422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the interaction of solitons with an external periodic field within the framework of the modified Korteweg–de Vries (mKdV) equation. In the case of small perturbation a simple dynamical system is used to describe the soliton behavior. Equilibrium points of this dynamical system are computed when the external force travels at a constant speed. Assuming that the external force moves with sinusoidal speed, we demonstrate that the soliton behavior is qualitatively similar to the constant-speed case. Besides, a resonant frequency is derived from the asymptotic theory without using the classical broad force approximation. The results obtained from the dynamical system are compared with fully nonlinear direct numerical simulations, which reveal that the soliton solution exhibits spiral-like behavior in the soliton amplitude versus soliton phase space. Moreover, when the external force oscillates at the resonant frequency, the trajectories in the soliton phase versus soliton amplitude exhibit chaotic behavior.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"196 \",\"pages\":\"Article 116422\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925004357\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004357","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们在修正的Korteweg-de Vries (mKdV)方程框架内研究了孤子与外周期场的相互作用。在小扰动的情况下,用一个简单的动力系统来描述孤子的行为。当外力以恒定速度运动时,计算了该动力系统的平衡点。假设外力以正弦速度运动,我们证明了孤子的行为在质量上与等速情况相似。此外,在不使用经典广义力近似的情况下,利用渐近理论推导出了谐振频率。将动力学系统得到的结果与完全非线性的直接数值模拟结果进行了比较,结果表明,孤子解在孤子振幅与孤子相空间之间表现出螺旋状的行为。此外,当外力以共振频率振荡时,孤子相位与孤子振幅的轨迹表现出混沌行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spring–mass behavior of solitons under the influence of an external force field within the modified Korteweg–de Vries equation
We investigate the interaction of solitons with an external periodic field within the framework of the modified Korteweg–de Vries (mKdV) equation. In the case of small perturbation a simple dynamical system is used to describe the soliton behavior. Equilibrium points of this dynamical system are computed when the external force travels at a constant speed. Assuming that the external force moves with sinusoidal speed, we demonstrate that the soliton behavior is qualitatively similar to the constant-speed case. Besides, a resonant frequency is derived from the asymptotic theory without using the classical broad force approximation. The results obtained from the dynamical system are compared with fully nonlinear direct numerical simulations, which reveal that the soliton solution exhibits spiral-like behavior in the soliton amplitude versus soliton phase space. Moreover, when the external force oscillates at the resonant frequency, the trajectories in the soliton phase versus soliton amplitude exhibit chaotic behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信