层状反钙钛矿Li7O2Br2(BH4)和Li7O2(BH4)中超卤素增强带隙、延展性和Li+-离子电导率3

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Tongyu Liu,  and , Qiang Sun*, 
{"title":"层状反钙钛矿Li7O2Br2(BH4)和Li7O2(BH4)中超卤素增强带隙、延展性和Li+-离子电导率3","authors":"Tongyu Liu,&nbsp; and ,&nbsp;Qiang Sun*,&nbsp;","doi":"10.1021/acs.jpcc.5c0184910.1021/acs.jpcc.5c01849","DOIUrl":null,"url":null,"abstract":"<p >Superhalogens are widely recognized for their ability to modulate the properties of conventional antiperovskites. However, their impact on layered antiperovskites remains unexplored. To address this gap, this study investigates two superhalogen-based layered antiperovskite materials, Li<sub>7</sub>O<sub>2</sub>Br<sub>2</sub>(BH<sub>4</sub>) and Li<sub>7</sub>O<sub>2</sub>(BH<sub>4</sub>)<sub>3</sub>, which are derived from Li<sub>7</sub>O<sub>2</sub>Br<sub>3</sub> by substituting Br<sup>–</sup> with superhalogen [BH<sub>4</sub>]<sup>−</sup>. Using DFT and AIMD simulations, we systematically examine their crystal structures, thermodynamic and mechanical stability, electronic properties, and Li<sup>+</sup> ion conductivity. The results reveal that both Li<sub>7</sub>O<sub>2</sub>Br<sub>2</sub>(BH<sub>4</sub>) and Li<sub>7</sub>O<sub>2</sub>(BH<sub>4</sub>)<sub>3</sub> exhibit high stability. The substitution of [BH<sub>4</sub>]<sup>−</sup> clusters significantly increases the band gap and alters the electronic states, underscoring the intricate interplay between chemical composition and electronic structure. Furthermore, the room-temperature Li<sup>+</sup>-ion conductivity is significantly enhanced compared to Li<sub>7</sub>O<sub>2</sub>Br<sub>3</sub>, primarily due to the rotational dynamics of [BH<sub>4</sub>]<sup>−</sup> clusters, which effectively lower the energy barriers for Li<sup>+</sup> hopping. Additionally, ductility is improved, as indicated by an increased Pugh’s ratio, facilitating better electrode contact and accommodating volume changes during Li<sup>+</sup>-ion insertion and extraction processes.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 15","pages":"7577–7586 7577–7586"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superhalogen-Enhanced Band Gap, Ductility, and Li+-Ion Conductivity in Layered Antiperovskites Li7O2Br2(BH4) and Li7O2(BH4)3\",\"authors\":\"Tongyu Liu,&nbsp; and ,&nbsp;Qiang Sun*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.5c0184910.1021/acs.jpcc.5c01849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Superhalogens are widely recognized for their ability to modulate the properties of conventional antiperovskites. However, their impact on layered antiperovskites remains unexplored. To address this gap, this study investigates two superhalogen-based layered antiperovskite materials, Li<sub>7</sub>O<sub>2</sub>Br<sub>2</sub>(BH<sub>4</sub>) and Li<sub>7</sub>O<sub>2</sub>(BH<sub>4</sub>)<sub>3</sub>, which are derived from Li<sub>7</sub>O<sub>2</sub>Br<sub>3</sub> by substituting Br<sup>–</sup> with superhalogen [BH<sub>4</sub>]<sup>−</sup>. Using DFT and AIMD simulations, we systematically examine their crystal structures, thermodynamic and mechanical stability, electronic properties, and Li<sup>+</sup> ion conductivity. The results reveal that both Li<sub>7</sub>O<sub>2</sub>Br<sub>2</sub>(BH<sub>4</sub>) and Li<sub>7</sub>O<sub>2</sub>(BH<sub>4</sub>)<sub>3</sub> exhibit high stability. The substitution of [BH<sub>4</sub>]<sup>−</sup> clusters significantly increases the band gap and alters the electronic states, underscoring the intricate interplay between chemical composition and electronic structure. Furthermore, the room-temperature Li<sup>+</sup>-ion conductivity is significantly enhanced compared to Li<sub>7</sub>O<sub>2</sub>Br<sub>3</sub>, primarily due to the rotational dynamics of [BH<sub>4</sub>]<sup>−</sup> clusters, which effectively lower the energy barriers for Li<sup>+</sup> hopping. Additionally, ductility is improved, as indicated by an increased Pugh’s ratio, facilitating better electrode contact and accommodating volume changes during Li<sup>+</sup>-ion insertion and extraction processes.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 15\",\"pages\":\"7577–7586 7577–7586\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c01849\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c01849","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

超卤素因其调节常规反钙钛矿性质的能力而被广泛认可。然而,它们对层状反钙钛矿的影响仍未被探索。为了解决这一空白,本研究研究了两种超卤素基层状反钙钛矿材料Li7O2Br2(BH4)和Li7O2(BH4)3,它们是由Li7O2Br3用超卤素[BH4]−取代Br -而得到的。利用DFT和AIMD模拟,我们系统地研究了它们的晶体结构、热力学和机械稳定性、电子性能和Li+离子电导率。结果表明,Li7O2Br2(BH4)和Li7O2(BH4)3均表现出较高的稳定性。[BH4]−簇的取代显著增加了带隙并改变了电子态,强调了化学成分和电子结构之间复杂的相互作用。此外,与Li7O2Br3相比,室温下Li+离子的电导率显著增强,这主要是由于[BH4]−团簇的旋转动力学,有效地降低了Li+跳变的能垒。此外,延展性得到了改善,如Pugh比的增加所示,有利于更好的电极接触,并在Li+离子插入和提取过程中适应体积变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Superhalogen-Enhanced Band Gap, Ductility, and Li+-Ion Conductivity in Layered Antiperovskites Li7O2Br2(BH4) and Li7O2(BH4)3

Superhalogen-Enhanced Band Gap, Ductility, and Li+-Ion Conductivity in Layered Antiperovskites Li7O2Br2(BH4) and Li7O2(BH4)3

Superhalogens are widely recognized for their ability to modulate the properties of conventional antiperovskites. However, their impact on layered antiperovskites remains unexplored. To address this gap, this study investigates two superhalogen-based layered antiperovskite materials, Li7O2Br2(BH4) and Li7O2(BH4)3, which are derived from Li7O2Br3 by substituting Br with superhalogen [BH4]. Using DFT and AIMD simulations, we systematically examine their crystal structures, thermodynamic and mechanical stability, electronic properties, and Li+ ion conductivity. The results reveal that both Li7O2Br2(BH4) and Li7O2(BH4)3 exhibit high stability. The substitution of [BH4] clusters significantly increases the band gap and alters the electronic states, underscoring the intricate interplay between chemical composition and electronic structure. Furthermore, the room-temperature Li+-ion conductivity is significantly enhanced compared to Li7O2Br3, primarily due to the rotational dynamics of [BH4] clusters, which effectively lower the energy barriers for Li+ hopping. Additionally, ductility is improved, as indicated by an increased Pugh’s ratio, facilitating better electrode contact and accommodating volume changes during Li+-ion insertion and extraction processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信