突变特征的贝叶斯多研究非负矩阵因式分解

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Isabella N. Grabski, Lorenzo Trippa, Giovanni Parmigiani
{"title":"突变特征的贝叶斯多研究非负矩阵因式分解","authors":"Isabella N. Grabski, Lorenzo Trippa, Giovanni Parmigiani","doi":"10.1186/s13059-025-03563-0","DOIUrl":null,"url":null,"abstract":"Mutational signatures are typically identified from tumor genome sequencing data using non-negative matrix factorization (NMF). However, existing NMF techniques only decompose a single dataset, limiting rigorous comparisons of signatures across conditions. We propose a Bayesian NMF method that jointly decomposes multiple datasets to identify signatures and their sharing pattern across conditions. We propose a fully unsupervised “discovery-only” model and a semi-supervised “recovery-discovery” model that simultaneously estimates known and novel signatures, and extend both to estimate covariate effects. We demonstrate our approach on extensive simulations, and apply our method to answer questions related to colorectal cancer and early-onset breast cancer.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"2 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian multi-study non-negative matrix factorization for mutational signatures\",\"authors\":\"Isabella N. Grabski, Lorenzo Trippa, Giovanni Parmigiani\",\"doi\":\"10.1186/s13059-025-03563-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mutational signatures are typically identified from tumor genome sequencing data using non-negative matrix factorization (NMF). However, existing NMF techniques only decompose a single dataset, limiting rigorous comparisons of signatures across conditions. We propose a Bayesian NMF method that jointly decomposes multiple datasets to identify signatures and their sharing pattern across conditions. We propose a fully unsupervised “discovery-only” model and a semi-supervised “recovery-discovery” model that simultaneously estimates known and novel signatures, and extend both to estimate covariate effects. We demonstrate our approach on extensive simulations, and apply our method to answer questions related to colorectal cancer and early-onset breast cancer.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03563-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03563-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

突变特征通常使用非负矩阵分解(NMF)从肿瘤基因组测序数据中识别。然而,现有的NMF技术只能分解单个数据集,限制了对不同条件下签名的严格比较。我们提出了一种贝叶斯NMF方法,该方法联合分解多个数据集来识别签名及其在不同条件下的共享模式。我们提出了一个完全无监督的“仅发现”模型和一个半监督的“恢复-发现”模型,可以同时估计已知和新的特征,并将两者扩展到估计协变量效应。我们在广泛的模拟中展示了我们的方法,并应用我们的方法来回答与结直肠癌和早发性乳腺癌相关的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian multi-study non-negative matrix factorization for mutational signatures
Mutational signatures are typically identified from tumor genome sequencing data using non-negative matrix factorization (NMF). However, existing NMF techniques only decompose a single dataset, limiting rigorous comparisons of signatures across conditions. We propose a Bayesian NMF method that jointly decomposes multiple datasets to identify signatures and their sharing pattern across conditions. We propose a fully unsupervised “discovery-only” model and a semi-supervised “recovery-discovery” model that simultaneously estimates known and novel signatures, and extend both to estimate covariate effects. We demonstrate our approach on extensive simulations, and apply our method to answer questions related to colorectal cancer and early-onset breast cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信