具有竞价隐私保护的分布式kWTA在密封竞价中的应用分析与设计

IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
John Sum;Chi-Sing Leung;Janet C. C. Chang
{"title":"具有竞价隐私保护的分布式kWTA在密封竞价中的应用分析与设计","authors":"John Sum;Chi-Sing Leung;Janet C. C. Chang","doi":"10.1109/TNNLS.2025.3554440","DOIUrl":null,"url":null,"abstract":"This article presents a distributed <italic>k</i>-winner-take-all (<italic>k</i>WTA) with application in sealed-bid auctions with bidding price privacy protection. The proposed <italic>k</i>WTA is in essence a distributed network of <italic>n</i> agents which are arbitrarily connected. Let <inline-formula> <tex-math>$\\aleph _{i}$ </tex-math></inline-formula> be the set of neighbor agents of the <italic>i</i>th agent, <inline-formula> <tex-math>$u_{i}$ </tex-math></inline-formula>, <inline-formula> <tex-math>$x_{i}$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$z_{i}$ </tex-math></inline-formula> are, respectively, its input, state variable, and output. The dynamics of the <italic>i</i>th agent is given by <inline-formula> <tex-math>$ ((dx_{i}(t))/dt) = \\tau \\left \\{{{ z_{i}(x_{i}(t)) - (k/n) - \\beta \\sum _{j\\in \\aleph _{i}} (x_{i}(t) - x_{j}(t)) }}\\right \\}, z_{i}(x_{i}(t)) = h(u_{i}-x_{i}(t)), \\text {for}~i = 1, \\ldots , n$ </tex-math></inline-formula> where <inline-formula> <tex-math>$\\beta \\gt 0$ </tex-math></inline-formula>, <italic>k</i> is the number of winners and <inline-formula> <tex-math>$h(\\cdot)$ </tex-math></inline-formula> is the Heaviside function. By the theory of discontinuous dynamic systems, it is shown that the state equation for <inline-formula> <tex-math>$d{\\mathbf {x}}(t)/dt$ </tex-math></inline-formula> could be formulated as a gradient differential inclusion which minimizes the following nonsmooth convex function. <inline-formula> <tex-math>$V({\\mathbf {x}}) = \\sum _{i=1}^{n} \\max \\{0, u_{i} - x_{i}\\} + (k/n) \\sum _{i=1}^{n} x_{i} + (\\beta /2){\\mathbf {x}}^{T} {\\mathbf {L}} {\\mathbf {x}}$ </tex-math></inline-formula> where <inline-formula> <tex-math>${\\mathbf {x}} = (x_{1}, \\ldots , x_{n})^{n}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\mathbf {L}} \\in R^{n\\times n}$ </tex-math></inline-formula> is the graph Laplacian matrix. A sufficient condition for <inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula> is derived for the <italic>k</i>WTA giving correct output and the condition is then applied in showing that <inline-formula> <tex-math>${\\mathbf {z}}(t)$ </tex-math></inline-formula> converges to the correct output in finite-time. If <inline-formula> <tex-math>$\\beta \\rightarrow \\infty $ </tex-math></inline-formula> and <inline-formula> <tex-math>$x_{1}(0) = \\cdots = x_{n}(0)$ </tex-math></inline-formula>, we further show that <inline-formula> <tex-math>$x_{1}(t) = \\cdots = x_{n}(t)$ </tex-math></inline-formula> for <inline-formula> <tex-math>$t \\geq 0$ </tex-math></inline-formula>, and both <inline-formula> <tex-math>${\\mathbf {z}}(t)$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\mathbf {x}}(t)$ </tex-math></inline-formula> converge in finite-time. Besides, <inline-formula> <tex-math>$x_{i}$ </tex-math></inline-formula> converges to<inline-formula> <tex-math>$u_{\\pi _{n-k+1}}$ </tex-math></inline-formula> (resp. <inline-formula> <tex-math>$u_{\\pi _{n-k}}$ </tex-math></inline-formula>) if <inline-formula> <tex-math>$x_{i}(0) \\gg 1$ </tex-math></inline-formula> (resp. <inline-formula> <tex-math>$x_{i}(0) = 0)$ </tex-math></inline-formula> for <inline-formula> <tex-math>$i = 1, \\ldots , n$ </tex-math></inline-formula>. If the input <inline-formula> <tex-math>$u_{i}$ </tex-math></inline-formula> is set to be the bid price of the <italic>i</i>th bidder and <inline-formula> <tex-math>$k = 1$ </tex-math></inline-formula>, the proposed <italic>k</i>WTA is able to determine both the winners and the clearing price for a sealed-bid first (resp. second) price auction in a distributed manner. Once <inline-formula> <tex-math>${\\mathbf {z}}(t)$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\mathbf {x}}(t)$ </tex-math></inline-formula> converge, each bidder can reveal from: 1) <inline-formula> <tex-math>$z_{i}$ </tex-math></inline-formula> if he/she is a winner and 2) <inline-formula> <tex-math>$x_{i}$ </tex-math></inline-formula> the clearing price. As bidders do not have to disclose their bidding prices during the winner (resp. the clearing price) determination process, the loosing (resp. winning) bidding price privacy can be protected in a sealed-bid first (resp. second) price auction. It is insofar the first application of an <italic>k</i>WTA beyond the winner’s determination.","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"36 9","pages":"16264-16278"},"PeriodicalIF":8.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Design of a Distributed kWTA With Application in Sealed-Bid Auctions With Bidding Price Privacy Protection\",\"authors\":\"John Sum;Chi-Sing Leung;Janet C. C. Chang\",\"doi\":\"10.1109/TNNLS.2025.3554440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a distributed <italic>k</i>-winner-take-all (<italic>k</i>WTA) with application in sealed-bid auctions with bidding price privacy protection. The proposed <italic>k</i>WTA is in essence a distributed network of <italic>n</i> agents which are arbitrarily connected. Let <inline-formula> <tex-math>$\\\\aleph _{i}$ </tex-math></inline-formula> be the set of neighbor agents of the <italic>i</i>th agent, <inline-formula> <tex-math>$u_{i}$ </tex-math></inline-formula>, <inline-formula> <tex-math>$x_{i}$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$z_{i}$ </tex-math></inline-formula> are, respectively, its input, state variable, and output. The dynamics of the <italic>i</i>th agent is given by <inline-formula> <tex-math>$ ((dx_{i}(t))/dt) = \\\\tau \\\\left \\\\{{{ z_{i}(x_{i}(t)) - (k/n) - \\\\beta \\\\sum _{j\\\\in \\\\aleph _{i}} (x_{i}(t) - x_{j}(t)) }}\\\\right \\\\}, z_{i}(x_{i}(t)) = h(u_{i}-x_{i}(t)), \\\\text {for}~i = 1, \\\\ldots , n$ </tex-math></inline-formula> where <inline-formula> <tex-math>$\\\\beta \\\\gt 0$ </tex-math></inline-formula>, <italic>k</i> is the number of winners and <inline-formula> <tex-math>$h(\\\\cdot)$ </tex-math></inline-formula> is the Heaviside function. By the theory of discontinuous dynamic systems, it is shown that the state equation for <inline-formula> <tex-math>$d{\\\\mathbf {x}}(t)/dt$ </tex-math></inline-formula> could be formulated as a gradient differential inclusion which minimizes the following nonsmooth convex function. <inline-formula> <tex-math>$V({\\\\mathbf {x}}) = \\\\sum _{i=1}^{n} \\\\max \\\\{0, u_{i} - x_{i}\\\\} + (k/n) \\\\sum _{i=1}^{n} x_{i} + (\\\\beta /2){\\\\mathbf {x}}^{T} {\\\\mathbf {L}} {\\\\mathbf {x}}$ </tex-math></inline-formula> where <inline-formula> <tex-math>${\\\\mathbf {x}} = (x_{1}, \\\\ldots , x_{n})^{n}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\\\mathbf {L}} \\\\in R^{n\\\\times n}$ </tex-math></inline-formula> is the graph Laplacian matrix. A sufficient condition for <inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula> is derived for the <italic>k</i>WTA giving correct output and the condition is then applied in showing that <inline-formula> <tex-math>${\\\\mathbf {z}}(t)$ </tex-math></inline-formula> converges to the correct output in finite-time. If <inline-formula> <tex-math>$\\\\beta \\\\rightarrow \\\\infty $ </tex-math></inline-formula> and <inline-formula> <tex-math>$x_{1}(0) = \\\\cdots = x_{n}(0)$ </tex-math></inline-formula>, we further show that <inline-formula> <tex-math>$x_{1}(t) = \\\\cdots = x_{n}(t)$ </tex-math></inline-formula> for <inline-formula> <tex-math>$t \\\\geq 0$ </tex-math></inline-formula>, and both <inline-formula> <tex-math>${\\\\mathbf {z}}(t)$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\\\mathbf {x}}(t)$ </tex-math></inline-formula> converge in finite-time. Besides, <inline-formula> <tex-math>$x_{i}$ </tex-math></inline-formula> converges to<inline-formula> <tex-math>$u_{\\\\pi _{n-k+1}}$ </tex-math></inline-formula> (resp. <inline-formula> <tex-math>$u_{\\\\pi _{n-k}}$ </tex-math></inline-formula>) if <inline-formula> <tex-math>$x_{i}(0) \\\\gg 1$ </tex-math></inline-formula> (resp. <inline-formula> <tex-math>$x_{i}(0) = 0)$ </tex-math></inline-formula> for <inline-formula> <tex-math>$i = 1, \\\\ldots , n$ </tex-math></inline-formula>. If the input <inline-formula> <tex-math>$u_{i}$ </tex-math></inline-formula> is set to be the bid price of the <italic>i</i>th bidder and <inline-formula> <tex-math>$k = 1$ </tex-math></inline-formula>, the proposed <italic>k</i>WTA is able to determine both the winners and the clearing price for a sealed-bid first (resp. second) price auction in a distributed manner. Once <inline-formula> <tex-math>${\\\\mathbf {z}}(t)$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\\\mathbf {x}}(t)$ </tex-math></inline-formula> converge, each bidder can reveal from: 1) <inline-formula> <tex-math>$z_{i}$ </tex-math></inline-formula> if he/she is a winner and 2) <inline-formula> <tex-math>$x_{i}$ </tex-math></inline-formula> the clearing price. As bidders do not have to disclose their bidding prices during the winner (resp. the clearing price) determination process, the loosing (resp. winning) bidding price privacy can be protected in a sealed-bid first (resp. second) price auction. It is insofar the first application of an <italic>k</i>WTA beyond the winner’s determination.\",\"PeriodicalId\":13303,\"journal\":{\"name\":\"IEEE transactions on neural networks and learning systems\",\"volume\":\"36 9\",\"pages\":\"16264-16278\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks and learning systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10965589/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10965589/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种分布式k-赢者通吃(kWTA)算法,并将其应用于具有竞价隐私保护的密封竞价中。所提出的kWTA本质上是一个由任意连接的n个代理组成的分布式网络。设$\aleph _{i}$为第i个代理的邻居代理集,$u_{i}$、$x_{i}$和$z_{i}$分别是它的输入、状态变量和输出。第i个代理的动态由$ ((dx_{i}(t))/dt) = \tau \left \{{{ z_{i}(x_{i}(t)) - (k/n) - \beta \sum _{j\in \aleph _{i}} (x_{i}(t) - x_{j}(t)) }}\right \}, z_{i}(x_{i}(t)) = h(u_{i}-x_{i}(t)), \text {for}~i = 1, \ldots , n$给出,其中$\beta \gt 0$, k是获胜者的数量,$h(\cdot)$是Heaviside函数。利用不连续动力系统理论,证明了$d{\mathbf {x}}(t)/dt$的状态方程可以表示为一个梯度微分包含,它使以下非光滑凸函数最小化。$V({\mathbf {x}}) = \sum _{i=1}^{n} \max \{0, u_{i} - x_{i}\} + (k/n) \sum _{i=1}^{n} x_{i} + (\beta /2){\mathbf {x}}^{T} {\mathbf {L}} {\mathbf {x}}$其中${\mathbf {x}} = (x_{1}, \ldots , x_{n})^{n}$和${\mathbf {L}} \in R^{n\times n}$为图拉普拉斯矩阵。导出了$\beta $的充分条件,使kWTA能给出正确的输出,并应用该条件证明${\mathbf {z}}(t)$在有限时间内收敛于正确的输出。如果$\beta \rightarrow \infty $和$x_{1}(0) = \cdots = x_{n}(0)$,我们进一步证明$x_{1}(t) = \cdots = x_{n}(t)$对于$t \geq 0$,并且${\mathbf {z}}(t)$和${\mathbf {x}}(t)$在有限时间内收敛。此外,$x_{i}$收敛到$u_{\pi _{n-k+1}}$(见图1)。$u_{\pi _{n-k}}$)如果$x_{i}(0) \gg 1$(参见:$x_{i}(0) = 0)$代表$i = 1, \ldots , n$。如果输入$u_{i}$被设置为第i个投标人和$k = 1$的投标价格,则拟议的kWTA能够首先确定中标者和密封投标的结算价格(见第2章)。第二,分布式价格拍卖。一旦${\mathbf {z}}(t)$和${\mathbf {x}}(t)$汇合,每个竞标者可以从:1)$z_{i}$(如果他/她是赢家)和2)$x_{i}$(如果他/她是赢家)透露结算价格。由于竞标者不必在中标者(如中标者)中标期间披露其出价。结算价(clearing price)的确定过程,亏损(loss)的确定过程。中标价格隐私可以在密封投标中得到保护。第二,价格拍卖。这是迄今为止第一次在获奖者的决定之外申请kWTA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and Design of a Distributed kWTA With Application in Sealed-Bid Auctions With Bidding Price Privacy Protection
This article presents a distributed k-winner-take-all (kWTA) with application in sealed-bid auctions with bidding price privacy protection. The proposed kWTA is in essence a distributed network of n agents which are arbitrarily connected. Let $\aleph _{i}$ be the set of neighbor agents of the ith agent, $u_{i}$ , $x_{i}$ , and $z_{i}$ are, respectively, its input, state variable, and output. The dynamics of the ith agent is given by $ ((dx_{i}(t))/dt) = \tau \left \{{{ z_{i}(x_{i}(t)) - (k/n) - \beta \sum _{j\in \aleph _{i}} (x_{i}(t) - x_{j}(t)) }}\right \}, z_{i}(x_{i}(t)) = h(u_{i}-x_{i}(t)), \text {for}~i = 1, \ldots , n$ where $\beta \gt 0$ , k is the number of winners and $h(\cdot)$ is the Heaviside function. By the theory of discontinuous dynamic systems, it is shown that the state equation for $d{\mathbf {x}}(t)/dt$ could be formulated as a gradient differential inclusion which minimizes the following nonsmooth convex function. $V({\mathbf {x}}) = \sum _{i=1}^{n} \max \{0, u_{i} - x_{i}\} + (k/n) \sum _{i=1}^{n} x_{i} + (\beta /2){\mathbf {x}}^{T} {\mathbf {L}} {\mathbf {x}}$ where ${\mathbf {x}} = (x_{1}, \ldots , x_{n})^{n}$ and ${\mathbf {L}} \in R^{n\times n}$ is the graph Laplacian matrix. A sufficient condition for $\beta $ is derived for the kWTA giving correct output and the condition is then applied in showing that ${\mathbf {z}}(t)$ converges to the correct output in finite-time. If $\beta \rightarrow \infty $ and $x_{1}(0) = \cdots = x_{n}(0)$ , we further show that $x_{1}(t) = \cdots = x_{n}(t)$ for $t \geq 0$ , and both ${\mathbf {z}}(t)$ and ${\mathbf {x}}(t)$ converge in finite-time. Besides, $x_{i}$ converges to $u_{\pi _{n-k+1}}$ (resp. $u_{\pi _{n-k}}$ ) if $x_{i}(0) \gg 1$ (resp. $x_{i}(0) = 0)$ for $i = 1, \ldots , n$ . If the input $u_{i}$ is set to be the bid price of the ith bidder and $k = 1$ , the proposed kWTA is able to determine both the winners and the clearing price for a sealed-bid first (resp. second) price auction in a distributed manner. Once ${\mathbf {z}}(t)$ and ${\mathbf {x}}(t)$ converge, each bidder can reveal from: 1) $z_{i}$ if he/she is a winner and 2) $x_{i}$ the clearing price. As bidders do not have to disclose their bidding prices during the winner (resp. the clearing price) determination process, the loosing (resp. winning) bidding price privacy can be protected in a sealed-bid first (resp. second) price auction. It is insofar the first application of an kWTA beyond the winner’s determination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信