{"title":"具有竞价隐私保护的分布式kWTA在密封竞价中的应用分析与设计","authors":"John Sum;Chi-Sing Leung;Janet C. C. Chang","doi":"10.1109/TNNLS.2025.3554440","DOIUrl":null,"url":null,"abstract":"This article presents a distributed <italic>k</i>-winner-take-all (<italic>k</i>WTA) with application in sealed-bid auctions with bidding price privacy protection. The proposed <italic>k</i>WTA is in essence a distributed network of <italic>n</i> agents which are arbitrarily connected. Let <inline-formula> <tex-math>$\\aleph _{i}$ </tex-math></inline-formula> be the set of neighbor agents of the <italic>i</i>th agent, <inline-formula> <tex-math>$u_{i}$ </tex-math></inline-formula>, <inline-formula> <tex-math>$x_{i}$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$z_{i}$ </tex-math></inline-formula> are, respectively, its input, state variable, and output. The dynamics of the <italic>i</i>th agent is given by <inline-formula> <tex-math>$ ((dx_{i}(t))/dt) = \\tau \\left \\{{{ z_{i}(x_{i}(t)) - (k/n) - \\beta \\sum _{j\\in \\aleph _{i}} (x_{i}(t) - x_{j}(t)) }}\\right \\}, z_{i}(x_{i}(t)) = h(u_{i}-x_{i}(t)), \\text {for}~i = 1, \\ldots , n$ </tex-math></inline-formula> where <inline-formula> <tex-math>$\\beta \\gt 0$ </tex-math></inline-formula>, <italic>k</i> is the number of winners and <inline-formula> <tex-math>$h(\\cdot)$ </tex-math></inline-formula> is the Heaviside function. By the theory of discontinuous dynamic systems, it is shown that the state equation for <inline-formula> <tex-math>$d{\\mathbf {x}}(t)/dt$ </tex-math></inline-formula> could be formulated as a gradient differential inclusion which minimizes the following nonsmooth convex function. <inline-formula> <tex-math>$V({\\mathbf {x}}) = \\sum _{i=1}^{n} \\max \\{0, u_{i} - x_{i}\\} + (k/n) \\sum _{i=1}^{n} x_{i} + (\\beta /2){\\mathbf {x}}^{T} {\\mathbf {L}} {\\mathbf {x}}$ </tex-math></inline-formula> where <inline-formula> <tex-math>${\\mathbf {x}} = (x_{1}, \\ldots , x_{n})^{n}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\mathbf {L}} \\in R^{n\\times n}$ </tex-math></inline-formula> is the graph Laplacian matrix. A sufficient condition for <inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula> is derived for the <italic>k</i>WTA giving correct output and the condition is then applied in showing that <inline-formula> <tex-math>${\\mathbf {z}}(t)$ </tex-math></inline-formula> converges to the correct output in finite-time. If <inline-formula> <tex-math>$\\beta \\rightarrow \\infty $ </tex-math></inline-formula> and <inline-formula> <tex-math>$x_{1}(0) = \\cdots = x_{n}(0)$ </tex-math></inline-formula>, we further show that <inline-formula> <tex-math>$x_{1}(t) = \\cdots = x_{n}(t)$ </tex-math></inline-formula> for <inline-formula> <tex-math>$t \\geq 0$ </tex-math></inline-formula>, and both <inline-formula> <tex-math>${\\mathbf {z}}(t)$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\mathbf {x}}(t)$ </tex-math></inline-formula> converge in finite-time. Besides, <inline-formula> <tex-math>$x_{i}$ </tex-math></inline-formula> converges to<inline-formula> <tex-math>$u_{\\pi _{n-k+1}}$ </tex-math></inline-formula> (resp. <inline-formula> <tex-math>$u_{\\pi _{n-k}}$ </tex-math></inline-formula>) if <inline-formula> <tex-math>$x_{i}(0) \\gg 1$ </tex-math></inline-formula> (resp. <inline-formula> <tex-math>$x_{i}(0) = 0)$ </tex-math></inline-formula> for <inline-formula> <tex-math>$i = 1, \\ldots , n$ </tex-math></inline-formula>. If the input <inline-formula> <tex-math>$u_{i}$ </tex-math></inline-formula> is set to be the bid price of the <italic>i</i>th bidder and <inline-formula> <tex-math>$k = 1$ </tex-math></inline-formula>, the proposed <italic>k</i>WTA is able to determine both the winners and the clearing price for a sealed-bid first (resp. second) price auction in a distributed manner. Once <inline-formula> <tex-math>${\\mathbf {z}}(t)$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\mathbf {x}}(t)$ </tex-math></inline-formula> converge, each bidder can reveal from: 1) <inline-formula> <tex-math>$z_{i}$ </tex-math></inline-formula> if he/she is a winner and 2) <inline-formula> <tex-math>$x_{i}$ </tex-math></inline-formula> the clearing price. As bidders do not have to disclose their bidding prices during the winner (resp. the clearing price) determination process, the loosing (resp. winning) bidding price privacy can be protected in a sealed-bid first (resp. second) price auction. It is insofar the first application of an <italic>k</i>WTA beyond the winner’s determination.","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"36 9","pages":"16264-16278"},"PeriodicalIF":8.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Design of a Distributed kWTA With Application in Sealed-Bid Auctions With Bidding Price Privacy Protection\",\"authors\":\"John Sum;Chi-Sing Leung;Janet C. C. Chang\",\"doi\":\"10.1109/TNNLS.2025.3554440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a distributed <italic>k</i>-winner-take-all (<italic>k</i>WTA) with application in sealed-bid auctions with bidding price privacy protection. The proposed <italic>k</i>WTA is in essence a distributed network of <italic>n</i> agents which are arbitrarily connected. Let <inline-formula> <tex-math>$\\\\aleph _{i}$ </tex-math></inline-formula> be the set of neighbor agents of the <italic>i</i>th agent, <inline-formula> <tex-math>$u_{i}$ </tex-math></inline-formula>, <inline-formula> <tex-math>$x_{i}$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$z_{i}$ </tex-math></inline-formula> are, respectively, its input, state variable, and output. The dynamics of the <italic>i</i>th agent is given by <inline-formula> <tex-math>$ ((dx_{i}(t))/dt) = \\\\tau \\\\left \\\\{{{ z_{i}(x_{i}(t)) - (k/n) - \\\\beta \\\\sum _{j\\\\in \\\\aleph _{i}} (x_{i}(t) - x_{j}(t)) }}\\\\right \\\\}, z_{i}(x_{i}(t)) = h(u_{i}-x_{i}(t)), \\\\text {for}~i = 1, \\\\ldots , n$ </tex-math></inline-formula> where <inline-formula> <tex-math>$\\\\beta \\\\gt 0$ </tex-math></inline-formula>, <italic>k</i> is the number of winners and <inline-formula> <tex-math>$h(\\\\cdot)$ </tex-math></inline-formula> is the Heaviside function. By the theory of discontinuous dynamic systems, it is shown that the state equation for <inline-formula> <tex-math>$d{\\\\mathbf {x}}(t)/dt$ </tex-math></inline-formula> could be formulated as a gradient differential inclusion which minimizes the following nonsmooth convex function. <inline-formula> <tex-math>$V({\\\\mathbf {x}}) = \\\\sum _{i=1}^{n} \\\\max \\\\{0, u_{i} - x_{i}\\\\} + (k/n) \\\\sum _{i=1}^{n} x_{i} + (\\\\beta /2){\\\\mathbf {x}}^{T} {\\\\mathbf {L}} {\\\\mathbf {x}}$ </tex-math></inline-formula> where <inline-formula> <tex-math>${\\\\mathbf {x}} = (x_{1}, \\\\ldots , x_{n})^{n}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\\\mathbf {L}} \\\\in R^{n\\\\times n}$ </tex-math></inline-formula> is the graph Laplacian matrix. A sufficient condition for <inline-formula> <tex-math>$\\\\beta $ </tex-math></inline-formula> is derived for the <italic>k</i>WTA giving correct output and the condition is then applied in showing that <inline-formula> <tex-math>${\\\\mathbf {z}}(t)$ </tex-math></inline-formula> converges to the correct output in finite-time. If <inline-formula> <tex-math>$\\\\beta \\\\rightarrow \\\\infty $ </tex-math></inline-formula> and <inline-formula> <tex-math>$x_{1}(0) = \\\\cdots = x_{n}(0)$ </tex-math></inline-formula>, we further show that <inline-formula> <tex-math>$x_{1}(t) = \\\\cdots = x_{n}(t)$ </tex-math></inline-formula> for <inline-formula> <tex-math>$t \\\\geq 0$ </tex-math></inline-formula>, and both <inline-formula> <tex-math>${\\\\mathbf {z}}(t)$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\\\mathbf {x}}(t)$ </tex-math></inline-formula> converge in finite-time. Besides, <inline-formula> <tex-math>$x_{i}$ </tex-math></inline-formula> converges to<inline-formula> <tex-math>$u_{\\\\pi _{n-k+1}}$ </tex-math></inline-formula> (resp. <inline-formula> <tex-math>$u_{\\\\pi _{n-k}}$ </tex-math></inline-formula>) if <inline-formula> <tex-math>$x_{i}(0) \\\\gg 1$ </tex-math></inline-formula> (resp. <inline-formula> <tex-math>$x_{i}(0) = 0)$ </tex-math></inline-formula> for <inline-formula> <tex-math>$i = 1, \\\\ldots , n$ </tex-math></inline-formula>. If the input <inline-formula> <tex-math>$u_{i}$ </tex-math></inline-formula> is set to be the bid price of the <italic>i</i>th bidder and <inline-formula> <tex-math>$k = 1$ </tex-math></inline-formula>, the proposed <italic>k</i>WTA is able to determine both the winners and the clearing price for a sealed-bid first (resp. second) price auction in a distributed manner. Once <inline-formula> <tex-math>${\\\\mathbf {z}}(t)$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\\\mathbf {x}}(t)$ </tex-math></inline-formula> converge, each bidder can reveal from: 1) <inline-formula> <tex-math>$z_{i}$ </tex-math></inline-formula> if he/she is a winner and 2) <inline-formula> <tex-math>$x_{i}$ </tex-math></inline-formula> the clearing price. As bidders do not have to disclose their bidding prices during the winner (resp. the clearing price) determination process, the loosing (resp. winning) bidding price privacy can be protected in a sealed-bid first (resp. second) price auction. It is insofar the first application of an <italic>k</i>WTA beyond the winner’s determination.\",\"PeriodicalId\":13303,\"journal\":{\"name\":\"IEEE transactions on neural networks and learning systems\",\"volume\":\"36 9\",\"pages\":\"16264-16278\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks and learning systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10965589/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10965589/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Analysis and Design of a Distributed kWTA With Application in Sealed-Bid Auctions With Bidding Price Privacy Protection
This article presents a distributed k-winner-take-all (kWTA) with application in sealed-bid auctions with bidding price privacy protection. The proposed kWTA is in essence a distributed network of n agents which are arbitrarily connected. Let $\aleph _{i}$ be the set of neighbor agents of the ith agent, $u_{i}$ , $x_{i}$ , and $z_{i}$ are, respectively, its input, state variable, and output. The dynamics of the ith agent is given by $ ((dx_{i}(t))/dt) = \tau \left \{{{ z_{i}(x_{i}(t)) - (k/n) - \beta \sum _{j\in \aleph _{i}} (x_{i}(t) - x_{j}(t)) }}\right \}, z_{i}(x_{i}(t)) = h(u_{i}-x_{i}(t)), \text {for}~i = 1, \ldots , n$ where $\beta \gt 0$ , k is the number of winners and $h(\cdot)$ is the Heaviside function. By the theory of discontinuous dynamic systems, it is shown that the state equation for $d{\mathbf {x}}(t)/dt$ could be formulated as a gradient differential inclusion which minimizes the following nonsmooth convex function. $V({\mathbf {x}}) = \sum _{i=1}^{n} \max \{0, u_{i} - x_{i}\} + (k/n) \sum _{i=1}^{n} x_{i} + (\beta /2){\mathbf {x}}^{T} {\mathbf {L}} {\mathbf {x}}$ where ${\mathbf {x}} = (x_{1}, \ldots , x_{n})^{n}$ and ${\mathbf {L}} \in R^{n\times n}$ is the graph Laplacian matrix. A sufficient condition for $\beta $ is derived for the kWTA giving correct output and the condition is then applied in showing that ${\mathbf {z}}(t)$ converges to the correct output in finite-time. If $\beta \rightarrow \infty $ and $x_{1}(0) = \cdots = x_{n}(0)$ , we further show that $x_{1}(t) = \cdots = x_{n}(t)$ for $t \geq 0$ , and both ${\mathbf {z}}(t)$ and ${\mathbf {x}}(t)$ converge in finite-time. Besides, $x_{i}$ converges to$u_{\pi _{n-k+1}}$ (resp. $u_{\pi _{n-k}}$ ) if $x_{i}(0) \gg 1$ (resp. $x_{i}(0) = 0)$ for $i = 1, \ldots , n$ . If the input $u_{i}$ is set to be the bid price of the ith bidder and $k = 1$ , the proposed kWTA is able to determine both the winners and the clearing price for a sealed-bid first (resp. second) price auction in a distributed manner. Once ${\mathbf {z}}(t)$ and ${\mathbf {x}}(t)$ converge, each bidder can reveal from: 1) $z_{i}$ if he/she is a winner and 2) $x_{i}$ the clearing price. As bidders do not have to disclose their bidding prices during the winner (resp. the clearing price) determination process, the loosing (resp. winning) bidding price privacy can be protected in a sealed-bid first (resp. second) price auction. It is insofar the first application of an kWTA beyond the winner’s determination.
期刊介绍:
The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.