验证所有流量:针对多路径路由的网络零信任入侵检测

IF 17.2
Ziming Zhao;Zhaoxuan Li;Xiaofei Xie;Zhipeng Liu;Tingting Li;Jiongchi Yu;Fan Zhang;Binbin Chen
{"title":"验证所有流量:针对多路径路由的网络零信任入侵检测","authors":"Ziming Zhao;Zhaoxuan Li;Xiaofei Xie;Zhipeng Liu;Tingting Li;Jiongchi Yu;Fan Zhang;Binbin Chen","doi":"10.1109/JSAC.2025.3560045","DOIUrl":null,"url":null,"abstract":"With the popularity of encryption protocols, machine learning (ML)-based traffic analysis technologies have attracted widespread attention. To adapt to modern high-speed bandwidth, recent research is dedicated to advancing zero-trust intrusion detection by offloading feature extraction and model inference into the network dataplane. Especially, with the rise of programmable switches, achieving line-speed ML inference becomes promising. However, existing research only considers a single switch node as a relay to conduct evaluation. This is far from real-world deployments involving multiple switches (given that zero-trust security assumes that threats can originate from anywhere, including within the network), particularly the multipath routing phenomenon that exists in practice. In this paper, we reveal practical challenges in the context of enabling line-speed model inference in the network dataplane. Furthermore, we propose FCPlane, the forwarding and computing integrated dataplane for zero-trust intrusion detection that aims to enable efficient load balancing while providing reliable traffic analysis results, even against multipath routing. The core idea is to reconcile forwarding and computation to the flowlet level, for which a tailor-made Markov chain model is designed. Based on two public traffic datasets, we evaluate seven state-of-the-art in-network traffic analysis models deployed in four types of topologies (three with multipath routing and one without) to explore performance impact and demonstrate the effectiveness of our proposal.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 6","pages":"2155-2171"},"PeriodicalIF":17.2000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verify All Traffic: Towards Zero-Trust In-Network Intrusion Detection Against Multipath Routing\",\"authors\":\"Ziming Zhao;Zhaoxuan Li;Xiaofei Xie;Zhipeng Liu;Tingting Li;Jiongchi Yu;Fan Zhang;Binbin Chen\",\"doi\":\"10.1109/JSAC.2025.3560045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the popularity of encryption protocols, machine learning (ML)-based traffic analysis technologies have attracted widespread attention. To adapt to modern high-speed bandwidth, recent research is dedicated to advancing zero-trust intrusion detection by offloading feature extraction and model inference into the network dataplane. Especially, with the rise of programmable switches, achieving line-speed ML inference becomes promising. However, existing research only considers a single switch node as a relay to conduct evaluation. This is far from real-world deployments involving multiple switches (given that zero-trust security assumes that threats can originate from anywhere, including within the network), particularly the multipath routing phenomenon that exists in practice. In this paper, we reveal practical challenges in the context of enabling line-speed model inference in the network dataplane. Furthermore, we propose FCPlane, the forwarding and computing integrated dataplane for zero-trust intrusion detection that aims to enable efficient load balancing while providing reliable traffic analysis results, even against multipath routing. The core idea is to reconcile forwarding and computation to the flowlet level, for which a tailor-made Markov chain model is designed. Based on two public traffic datasets, we evaluate seven state-of-the-art in-network traffic analysis models deployed in four types of topologies (three with multipath routing and one without) to explore performance impact and demonstrate the effectiveness of our proposal.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":\"43 6\",\"pages\":\"2155-2171\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10963991/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10963991/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着加密协议的普及,基于机器学习(ML)的流量分析技术受到了广泛关注。为了适应现代高速带宽的要求,研究人员将特征提取和模型推断工作转移到网络数据平面上来推进零信任入侵检测。特别是,随着可编程开关的兴起,实现线速ML推理变得很有希望。然而,现有的研究只考虑单个交换节点作为中继进行评估。这与涉及多个交换机的实际部署相距甚远(考虑到零信任安全性假设威胁可以来自任何地方,包括网络内部),特别是在实践中存在的多路径路由现象。在本文中,我们揭示了在网络数据平面中实现线速模型推理的实际挑战。此外,我们提出FCPlane,用于零信任入侵检测的转发和计算集成数据平面,旨在实现有效的负载平衡,同时提供可靠的流量分析结果,即使针对多路径路由。其核心思想是将转发和计算协调到流层,为此设计了一个量身定制的马尔可夫链模型。基于两个公共流量数据集,我们评估了部署在四种类型拓扑(三种带有多路径路由,一种没有)中的七种最先进的网络内流量分析模型,以探索性能影响并证明我们建议的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verify All Traffic: Towards Zero-Trust In-Network Intrusion Detection Against Multipath Routing
With the popularity of encryption protocols, machine learning (ML)-based traffic analysis technologies have attracted widespread attention. To adapt to modern high-speed bandwidth, recent research is dedicated to advancing zero-trust intrusion detection by offloading feature extraction and model inference into the network dataplane. Especially, with the rise of programmable switches, achieving line-speed ML inference becomes promising. However, existing research only considers a single switch node as a relay to conduct evaluation. This is far from real-world deployments involving multiple switches (given that zero-trust security assumes that threats can originate from anywhere, including within the network), particularly the multipath routing phenomenon that exists in practice. In this paper, we reveal practical challenges in the context of enabling line-speed model inference in the network dataplane. Furthermore, we propose FCPlane, the forwarding and computing integrated dataplane for zero-trust intrusion detection that aims to enable efficient load balancing while providing reliable traffic analysis results, even against multipath routing. The core idea is to reconcile forwarding and computation to the flowlet level, for which a tailor-made Markov chain model is designed. Based on two public traffic datasets, we evaluate seven state-of-the-art in-network traffic analysis models deployed in four types of topologies (three with multipath routing and one without) to explore performance impact and demonstrate the effectiveness of our proposal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信