{"title":"用于医学图像分割的特征子空间投影知识蒸馏","authors":"Xiangchun Yu, Qiaoyi Chen, Miaomiao Liang, Lingjuan Yu, Jian Zheng","doi":"10.1002/ima.70085","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Feature-based knowledge distillation facilitates feature knowledge transfer by aligning intermediate features of students and high-performance teachers such as TranUnet and MISSFormer in medical image segmentation. However, the bias-variance coupling resulting from redundancy or noise within high-dimensional features presents a significant challenge for effective knowledge transfer. To tackle this issue, we propose a feature subspace projection knowledge distillation (FSP-KD) method to decouple bias and variance in the high-dimensional feature space. This method decomposes the feature space into two components: the variance-dependent distribution and the bias-dependent distribution. The bias-dependent distribution is modeled as a weighted post-projection feature distribution using the feature subspace projection (FSP) module. Likewise, the variance-dependent distribution is represented by a weighted pre-projection feature distribution. Additionally, a conditional adversarial mechanism (CADV) module is integrated at the logits layer to prompt the student to identify higher-order discrepancies from the teacher. This approach leverages conditional generative adversarial learning to improve the holistic alignment between student and teacher distributions. Extensive experiments are carried out on three benchmark datasets for medical image segmentation: Synapse, Flare2022, and m2caiSeg. The experimental results show that our proposed FSP-KD method has achieved state-of-the-art performance. Notably, FSP-KD has outperformed the teacher MISSFormer when used in a teacher-student setup with ResNet18. Ablation experiments and visualization results provide additional confirmation of the effectiveness of each module.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Subspace Projection Knowledge Distillation for Medical Image Segmentation\",\"authors\":\"Xiangchun Yu, Qiaoyi Chen, Miaomiao Liang, Lingjuan Yu, Jian Zheng\",\"doi\":\"10.1002/ima.70085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Feature-based knowledge distillation facilitates feature knowledge transfer by aligning intermediate features of students and high-performance teachers such as TranUnet and MISSFormer in medical image segmentation. However, the bias-variance coupling resulting from redundancy or noise within high-dimensional features presents a significant challenge for effective knowledge transfer. To tackle this issue, we propose a feature subspace projection knowledge distillation (FSP-KD) method to decouple bias and variance in the high-dimensional feature space. This method decomposes the feature space into two components: the variance-dependent distribution and the bias-dependent distribution. The bias-dependent distribution is modeled as a weighted post-projection feature distribution using the feature subspace projection (FSP) module. Likewise, the variance-dependent distribution is represented by a weighted pre-projection feature distribution. Additionally, a conditional adversarial mechanism (CADV) module is integrated at the logits layer to prompt the student to identify higher-order discrepancies from the teacher. This approach leverages conditional generative adversarial learning to improve the holistic alignment between student and teacher distributions. Extensive experiments are carried out on three benchmark datasets for medical image segmentation: Synapse, Flare2022, and m2caiSeg. The experimental results show that our proposed FSP-KD method has achieved state-of-the-art performance. Notably, FSP-KD has outperformed the teacher MISSFormer when used in a teacher-student setup with ResNet18. Ablation experiments and visualization results provide additional confirmation of the effectiveness of each module.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.70085\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70085","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Feature Subspace Projection Knowledge Distillation for Medical Image Segmentation
Feature-based knowledge distillation facilitates feature knowledge transfer by aligning intermediate features of students and high-performance teachers such as TranUnet and MISSFormer in medical image segmentation. However, the bias-variance coupling resulting from redundancy or noise within high-dimensional features presents a significant challenge for effective knowledge transfer. To tackle this issue, we propose a feature subspace projection knowledge distillation (FSP-KD) method to decouple bias and variance in the high-dimensional feature space. This method decomposes the feature space into two components: the variance-dependent distribution and the bias-dependent distribution. The bias-dependent distribution is modeled as a weighted post-projection feature distribution using the feature subspace projection (FSP) module. Likewise, the variance-dependent distribution is represented by a weighted pre-projection feature distribution. Additionally, a conditional adversarial mechanism (CADV) module is integrated at the logits layer to prompt the student to identify higher-order discrepancies from the teacher. This approach leverages conditional generative adversarial learning to improve the holistic alignment between student and teacher distributions. Extensive experiments are carried out on three benchmark datasets for medical image segmentation: Synapse, Flare2022, and m2caiSeg. The experimental results show that our proposed FSP-KD method has achieved state-of-the-art performance. Notably, FSP-KD has outperformed the teacher MISSFormer when used in a teacher-student setup with ResNet18. Ablation experiments and visualization results provide additional confirmation of the effectiveness of each module.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.