土木结构时变可靠性评估的混合驱动数字孪生框架

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Yu Xin, Yu-Sen Cai, Zuo-Cai Wang, Jun Li, Wei-Chao Hou, Chao Li
{"title":"土木结构时变可靠性评估的混合驱动数字孪生框架","authors":"Yu Xin,&nbsp;Yu-Sen Cai,&nbsp;Zuo-Cai Wang,&nbsp;Jun Li,&nbsp;Wei-Chao Hou,&nbsp;Chao Li","doi":"10.1155/stc/1167999","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This paper proposes a novel hybrid-driven digital twin (DT) framework for time-variant reliability assessment of civil structures, which mainly consists of four modules, including physics model construction, data-driven model calibration, failure probability calculation, and time-variant reliability prediction. In the first module, a DT model of a specific structure is constructed to simulate structural dynamic responses. Then, an improved unscented Kalman filter (IUKF) algorithm is performed to continuously calibrate the parameters of DT model. Subsequently, in module 3, the subset simulation (SS) approach is employed to calculate failure probability of structures subjected to various model parameter samples, and the generated input–output samples are further applied for metamodel training. A Kriging metamodeling is used to construct the correlation between model parameters and structural failure probability. Once the metamodel is well trained, the time-variant reliability assessment of structures can be continuously achieved in module 4. Numerical simulations on a Bouc–Wen model are conducted to validate the feasibility and accuracy of the proposed approach. Furthermore, a scaled column shake table structure is further employed to verify the effectiveness of the proposed approach. Both numerical and experimental results have shown that the proposed approach is capable of conducting time-variant reliability assessment of civil structures.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/1167999","citationCount":"0","resultStr":"{\"title\":\"Hybrid-Driven Digital Twin Framework for Time-Variant Reliability Assessment of Civil Structures\",\"authors\":\"Yu Xin,&nbsp;Yu-Sen Cai,&nbsp;Zuo-Cai Wang,&nbsp;Jun Li,&nbsp;Wei-Chao Hou,&nbsp;Chao Li\",\"doi\":\"10.1155/stc/1167999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>This paper proposes a novel hybrid-driven digital twin (DT) framework for time-variant reliability assessment of civil structures, which mainly consists of four modules, including physics model construction, data-driven model calibration, failure probability calculation, and time-variant reliability prediction. In the first module, a DT model of a specific structure is constructed to simulate structural dynamic responses. Then, an improved unscented Kalman filter (IUKF) algorithm is performed to continuously calibrate the parameters of DT model. Subsequently, in module 3, the subset simulation (SS) approach is employed to calculate failure probability of structures subjected to various model parameter samples, and the generated input–output samples are further applied for metamodel training. A Kriging metamodeling is used to construct the correlation between model parameters and structural failure probability. Once the metamodel is well trained, the time-variant reliability assessment of structures can be continuously achieved in module 4. Numerical simulations on a Bouc–Wen model are conducted to validate the feasibility and accuracy of the proposed approach. Furthermore, a scaled column shake table structure is further employed to verify the effectiveness of the proposed approach. Both numerical and experimental results have shown that the proposed approach is capable of conducting time-variant reliability assessment of civil structures.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/1167999\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/stc/1167999\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/1167999","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖的混合驱动数字孪生(DT)框架,用于土木工程结构的时变可靠性评估,主要包括物理模型构建、数据驱动模型标定、失效概率计算和时变可靠性预测四个模块。在第一个模块中,首先构建特定结构的 DT 模型,模拟结构动态响应。然后,采用改进的无特征卡尔曼滤波(IUKF)算法对 DT 模型的参数进行连续校准。随后,在模块 3 中,采用子集模拟(SS)方法计算结构在各种模型参数样本作用下的失效概率,并将生成的输入输出样本进一步用于元模型训练。使用克里金元模型构建模型参数与结构失效概率之间的相关性。一旦元模型训练有素,就可以在模块 4 中持续实现结构的时变可靠性评估。对 Bouc-Wen 模型进行了数值模拟,以验证所提方法的可行性和准确性。此外,还进一步采用了比例柱振动台结构来验证所提方法的有效性。数值和实验结果都表明,建议的方法能够对土木结构进行时变可靠性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybrid-Driven Digital Twin Framework for Time-Variant Reliability Assessment of Civil Structures

Hybrid-Driven Digital Twin Framework for Time-Variant Reliability Assessment of Civil Structures

This paper proposes a novel hybrid-driven digital twin (DT) framework for time-variant reliability assessment of civil structures, which mainly consists of four modules, including physics model construction, data-driven model calibration, failure probability calculation, and time-variant reliability prediction. In the first module, a DT model of a specific structure is constructed to simulate structural dynamic responses. Then, an improved unscented Kalman filter (IUKF) algorithm is performed to continuously calibrate the parameters of DT model. Subsequently, in module 3, the subset simulation (SS) approach is employed to calculate failure probability of structures subjected to various model parameter samples, and the generated input–output samples are further applied for metamodel training. A Kriging metamodeling is used to construct the correlation between model parameters and structural failure probability. Once the metamodel is well trained, the time-variant reliability assessment of structures can be continuously achieved in module 4. Numerical simulations on a Bouc–Wen model are conducted to validate the feasibility and accuracy of the proposed approach. Furthermore, a scaled column shake table structure is further employed to verify the effectiveness of the proposed approach. Both numerical and experimental results have shown that the proposed approach is capable of conducting time-variant reliability assessment of civil structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信