生物基自修复功能复合材料及其应用

Elham Nadim, Ian Major, Declan Devine, Pavan Paraskar
{"title":"生物基自修复功能复合材料及其应用","authors":"Elham Nadim,&nbsp;Ian Major,&nbsp;Declan Devine,&nbsp;Pavan Paraskar","doi":"10.1186/s42252-025-00065-x","DOIUrl":null,"url":null,"abstract":"<div><p>Self-healing composites are innovative materials designed to autonomously repair damage and restore functionality, offering a sustainable alternative to traditional thermosetting materials. These materials enable self-repair without external intervention, extending service life and reducing maintenance costs. Recently, bio-based self-healing composites comprising matrices and fillers derived from renewable resources such as polysaccharides (e.g., cellulose), lignin, vegetable oils, and vanillin have emerged as a promising solution to reduce dependence on non-renewable petroleum-based materials. This review delves into the advancements in bio-based self-healing composites, with a focus on systems utilizing dynamic covalent bonds (e.g., hydroxyl ester, Schiff base, disulfide bonds) and dynamic non-covalent interactions. It explores diverse self-healing mechanisms, including supramolecular chemistry, covalent bond reformation, diffusion and flow, heterogeneous systems, and shape-memory effects, as well as their synergistic combinations. The discussion spans both physical and chemical approaches, highlighting integrated physico-chemical strategies. Furthermore, the review examines state-of-the-art fabrication techniques and the broad range of applications for these materials. Future perspectives and research directions underscore the pivotal role of bio-based self-healing composites in advancing sustainable and durable solutions across multiple industries.</p></div>","PeriodicalId":576,"journal":{"name":"Functional Composite Materials","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmscomposites.springeropen.com/counter/pdf/10.1186/s42252-025-00065-x","citationCount":"0","resultStr":"{\"title\":\"Biobased self-healing functional composites and their applications\",\"authors\":\"Elham Nadim,&nbsp;Ian Major,&nbsp;Declan Devine,&nbsp;Pavan Paraskar\",\"doi\":\"10.1186/s42252-025-00065-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Self-healing composites are innovative materials designed to autonomously repair damage and restore functionality, offering a sustainable alternative to traditional thermosetting materials. These materials enable self-repair without external intervention, extending service life and reducing maintenance costs. Recently, bio-based self-healing composites comprising matrices and fillers derived from renewable resources such as polysaccharides (e.g., cellulose), lignin, vegetable oils, and vanillin have emerged as a promising solution to reduce dependence on non-renewable petroleum-based materials. This review delves into the advancements in bio-based self-healing composites, with a focus on systems utilizing dynamic covalent bonds (e.g., hydroxyl ester, Schiff base, disulfide bonds) and dynamic non-covalent interactions. It explores diverse self-healing mechanisms, including supramolecular chemistry, covalent bond reformation, diffusion and flow, heterogeneous systems, and shape-memory effects, as well as their synergistic combinations. The discussion spans both physical and chemical approaches, highlighting integrated physico-chemical strategies. Furthermore, the review examines state-of-the-art fabrication techniques and the broad range of applications for these materials. Future perspectives and research directions underscore the pivotal role of bio-based self-healing composites in advancing sustainable and durable solutions across multiple industries.</p></div>\",\"PeriodicalId\":576,\"journal\":{\"name\":\"Functional Composite Materials\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jmscomposites.springeropen.com/counter/pdf/10.1186/s42252-025-00065-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Composite Materials\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42252-025-00065-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Composite Materials","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s42252-025-00065-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自修复复合材料是一种创新材料,可自动修复损坏并恢复功能,是传统热固性材料的可持续替代品。这些材料能够在没有外部干预的情况下实现自我修复,从而延长使用寿命并降低维护成本。最近,由多糖(如纤维素)、木质素、植物油和香兰素等可再生资源提取的基质和填料组成的生物基自修复复合材料已成为一种有前途的解决方案,可减少对不可再生石油基材料的依赖。本综述深入探讨了生物基自愈合复合材料的进展,重点关注利用动态共价键(如羟基酯、席夫碱、二硫键)和动态非共价相互作用的系统。它探讨了各种自愈机制,包括超分子化学、共价键重构、扩散和流动、异质系统和形状记忆效应,以及它们的协同组合。讨论涵盖了物理和化学方法,突出了物理化学综合策略。此外,综述还探讨了最先进的制造技术以及这些材料的广泛应用。未来展望和研究方向强调了生物基自愈合复合材料在推动多个行业的可持续耐用解决方案方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biobased self-healing functional composites and their applications

Self-healing composites are innovative materials designed to autonomously repair damage and restore functionality, offering a sustainable alternative to traditional thermosetting materials. These materials enable self-repair without external intervention, extending service life and reducing maintenance costs. Recently, bio-based self-healing composites comprising matrices and fillers derived from renewable resources such as polysaccharides (e.g., cellulose), lignin, vegetable oils, and vanillin have emerged as a promising solution to reduce dependence on non-renewable petroleum-based materials. This review delves into the advancements in bio-based self-healing composites, with a focus on systems utilizing dynamic covalent bonds (e.g., hydroxyl ester, Schiff base, disulfide bonds) and dynamic non-covalent interactions. It explores diverse self-healing mechanisms, including supramolecular chemistry, covalent bond reformation, diffusion and flow, heterogeneous systems, and shape-memory effects, as well as their synergistic combinations. The discussion spans both physical and chemical approaches, highlighting integrated physico-chemical strategies. Furthermore, the review examines state-of-the-art fabrication techniques and the broad range of applications for these materials. Future perspectives and research directions underscore the pivotal role of bio-based self-healing composites in advancing sustainable and durable solutions across multiple industries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信