结合相邻环境变化的被动微波地表温度深度学习模型

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Weizhen Ji;Yunhao Chen;Haiping Xia;Han Gao;Lei Zhu
{"title":"结合相邻环境变化的被动微波地表温度深度学习模型","authors":"Weizhen Ji;Yunhao Chen;Haiping Xia;Han Gao;Lei Zhu","doi":"10.1109/JSTARS.2025.3554810","DOIUrl":null,"url":null,"abstract":"Passive microwave-based land surface temperature (PMW LST) serves as a significant source for complementary thermal infrared LST, whereas the orbit gaps frequently result in missing data. Up to now, many studies have proposed methods to fill these gaps in PMW LST. However, most of these methods depend on the assumption that the missing LST is similar to that of adjacent days, yet the natural environment changes may lead to this assumption not being established. To address this, we proposed a comprehensive deep-learning model that incorporates three groups of natural variables, including atmosphere, land environment, and radiation, from both the target and adjacent days. Simultaneously, we employ two advanced microwave scanning radiometer (AMSR) LST-based simulated validations and six in-situ measurements to evaluate the model's gap-filling performance. According to the results, the proposed model achieves root mean squared error (RMSE) of 1.87 K/1.89 K and 1.69 K/1.71 K for the two AMSR LST-based validations during the daytime/nighttime. Compared with the inverse distance weighted method and an advanced deep learning model, the proposed approach improves 0.27–0.5 K (12.6% –22.6%) and 0.14–0.3 K (6.9% –14.9%) during daytime and nighttime, respectively. Furthermore, based on the results of six in-situ measurements, the gap-filled results gain the average RMSE of 3.7 K and 3.21 K during the daytime and nighttime, respectively. In addition, we find that the land environment and radiation conditions have a stronger impact during the daytime, while atmospheric conditions are more sensitive at night. These findings present a more scientific and effective gap-filling method, potentially enhancing the accuracy of land thermal environment research.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"9682-9700"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10938895","citationCount":"0","resultStr":"{\"title\":\"Jointing Adjacent Environmental Variation Into a Deep Learning Model for Gap-Filling Passive Microwave-Based Land Surface Temperature\",\"authors\":\"Weizhen Ji;Yunhao Chen;Haiping Xia;Han Gao;Lei Zhu\",\"doi\":\"10.1109/JSTARS.2025.3554810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Passive microwave-based land surface temperature (PMW LST) serves as a significant source for complementary thermal infrared LST, whereas the orbit gaps frequently result in missing data. Up to now, many studies have proposed methods to fill these gaps in PMW LST. However, most of these methods depend on the assumption that the missing LST is similar to that of adjacent days, yet the natural environment changes may lead to this assumption not being established. To address this, we proposed a comprehensive deep-learning model that incorporates three groups of natural variables, including atmosphere, land environment, and radiation, from both the target and adjacent days. Simultaneously, we employ two advanced microwave scanning radiometer (AMSR) LST-based simulated validations and six in-situ measurements to evaluate the model's gap-filling performance. According to the results, the proposed model achieves root mean squared error (RMSE) of 1.87 K/1.89 K and 1.69 K/1.71 K for the two AMSR LST-based validations during the daytime/nighttime. Compared with the inverse distance weighted method and an advanced deep learning model, the proposed approach improves 0.27–0.5 K (12.6% –22.6%) and 0.14–0.3 K (6.9% –14.9%) during daytime and nighttime, respectively. Furthermore, based on the results of six in-situ measurements, the gap-filled results gain the average RMSE of 3.7 K and 3.21 K during the daytime and nighttime, respectively. In addition, we find that the land environment and radiation conditions have a stronger impact during the daytime, while atmospheric conditions are more sensitive at night. These findings present a more scientific and effective gap-filling method, potentially enhancing the accuracy of land thermal environment research.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"18 \",\"pages\":\"9682-9700\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10938895\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10938895/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10938895/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

被动微波地表温度(PMW LST)是补充热红外地表温度的重要来源,而轨道间隙经常导致数据丢失。到目前为止,许多研究都提出了填补PMW LST这些空白的方法。然而,这些方法大多依赖于缺失的地表温度与相邻日相似的假设,而自然环境的变化可能导致这一假设不成立。为了解决这个问题,我们提出了一个综合的深度学习模型,该模型结合了三组自然变量,包括大气、土地环境和辐射,这些变量来自目标日和邻近日。同时,我们利用两个先进的微波扫描辐射计(AMSR) lst模拟验证和六个原位测量来评估模型的空隙填充性能。结果表明,基于AMSR lst的白天和夜间验证模型的均方根误差(RMSE)分别为1.87 K/1.89 K和1.69 K/1.71 K。与距离逆加权方法和一种先进的深度学习模型相比,该方法在白天和夜间分别提高了0.27-0.5 K(12.6% -22.6%)和0.14-0.3 K(6.9% -14.9%)。此外,基于6次原位测量结果,空白填充结果在白天和夜间的平均RMSE分别为3.7 K和3.21 K。此外,我们发现白天陆地环境和辐射条件的影响更强,而夜间大气条件的影响更敏感。这些发现为陆地热环境研究提供了一种更为科学有效的空白填补方法,有望提高陆地热环境研究的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jointing Adjacent Environmental Variation Into a Deep Learning Model for Gap-Filling Passive Microwave-Based Land Surface Temperature
Passive microwave-based land surface temperature (PMW LST) serves as a significant source for complementary thermal infrared LST, whereas the orbit gaps frequently result in missing data. Up to now, many studies have proposed methods to fill these gaps in PMW LST. However, most of these methods depend on the assumption that the missing LST is similar to that of adjacent days, yet the natural environment changes may lead to this assumption not being established. To address this, we proposed a comprehensive deep-learning model that incorporates three groups of natural variables, including atmosphere, land environment, and radiation, from both the target and adjacent days. Simultaneously, we employ two advanced microwave scanning radiometer (AMSR) LST-based simulated validations and six in-situ measurements to evaluate the model's gap-filling performance. According to the results, the proposed model achieves root mean squared error (RMSE) of 1.87 K/1.89 K and 1.69 K/1.71 K for the two AMSR LST-based validations during the daytime/nighttime. Compared with the inverse distance weighted method and an advanced deep learning model, the proposed approach improves 0.27–0.5 K (12.6% –22.6%) and 0.14–0.3 K (6.9% –14.9%) during daytime and nighttime, respectively. Furthermore, based on the results of six in-situ measurements, the gap-filled results gain the average RMSE of 3.7 K and 3.21 K during the daytime and nighttime, respectively. In addition, we find that the land environment and radiation conditions have a stronger impact during the daytime, while atmospheric conditions are more sensitive at night. These findings present a more scientific and effective gap-filling method, potentially enhancing the accuracy of land thermal environment research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信