Mohammed Fulayyih Aloufi, Sara H. Hazem, Rania R. Abdelaziz, Ghada M. Suddek
{"title":"罗氟米司特通过抑制TNF-α/NF-κB、NLRP3/IL-1β和内质网应激传感器来对抗大剂量地塞米松诱导的脂肪性肝炎、代谢异常和主动脉损伤","authors":"Mohammed Fulayyih Aloufi, Sara H. Hazem, Rania R. Abdelaziz, Ghada M. Suddek","doi":"10.1016/j.lfs.2025.123634","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>High-dose dexamethasone (DEX) is used for management of severe conditions. However, the multisystem adverse effects induced by glucocorticoids represent a hindering stone toward the effective clinical use of such agents. Various initiatives have been taken to ameliorate these complications with limited success.</div></div><div><h3>Aim</h3><div>The present study aims to explore the beneficial effects of roflumilast (ROF), a phosphodiesterase-4 (PDE-4) inhibitor, to combat DEX-induced steatohepatitis, metabolic abnormalities and aortic degeneration.</div></div><div><h3>Results</h3><div>The application of ROF (2.5 and 5 mg/kg) has reverted the hepatic and aortic histopathological abnormalities as well as the rise in serum liver enzymes induced by DEX. Such palliative effect is probably attributed to PDE-4 inhibition (↑cAMP) that subsequently regulates multiple effectors. The chemotaxis of inflammatory cells (MCP-1) was inhibited by ROF treatments which was linked to inhibition of extracellular ROS production (MDA and NO) as well as restoration of cellular antioxidant defense (GSH). DEX challenge was associated with activation of the inflammatory pathways including TNF-α/NF-κB and NLRP3/IL-1β that were significantly dampened in the ROF groups. The oxidative stress as well as activation of inflammatory pathways exerted by DEX has contributed to the activation of endoplasmic reticulum stress (CHOP and PERK) posing more threats to the insulted cells, however, fortunately, ROF treatments showed inhibited activation of ER stress sensors and thereby abstaining the cells from inevitable damage. The metabolic abnormalities induced by DEX including elevated fasting insulin and heightened AUC of blood glucose level upon application of oral glucose tolerance test were significantly improved by ROF treatment.</div></div><div><h3>Conclusion</h3><div>The findings of our study depicted the hepatoprotective and metabolic regulating potentials of ROF in a rat model of DEX- induced steatohepatitis. Thereby, enhancing the overall efficacy and safety of DEX use in management of various disorders.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"372 ","pages":"Article 123634"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Roflumilast counteracts high-dose dexamethasone-induced steatohepatitis, metabolic abnormalities and aortic injury via inhibiting TNF-α/NF-κB, NLRP3/IL-1β and ER stress sensors\",\"authors\":\"Mohammed Fulayyih Aloufi, Sara H. Hazem, Rania R. Abdelaziz, Ghada M. Suddek\",\"doi\":\"10.1016/j.lfs.2025.123634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><div>High-dose dexamethasone (DEX) is used for management of severe conditions. However, the multisystem adverse effects induced by glucocorticoids represent a hindering stone toward the effective clinical use of such agents. Various initiatives have been taken to ameliorate these complications with limited success.</div></div><div><h3>Aim</h3><div>The present study aims to explore the beneficial effects of roflumilast (ROF), a phosphodiesterase-4 (PDE-4) inhibitor, to combat DEX-induced steatohepatitis, metabolic abnormalities and aortic degeneration.</div></div><div><h3>Results</h3><div>The application of ROF (2.5 and 5 mg/kg) has reverted the hepatic and aortic histopathological abnormalities as well as the rise in serum liver enzymes induced by DEX. Such palliative effect is probably attributed to PDE-4 inhibition (↑cAMP) that subsequently regulates multiple effectors. The chemotaxis of inflammatory cells (MCP-1) was inhibited by ROF treatments which was linked to inhibition of extracellular ROS production (MDA and NO) as well as restoration of cellular antioxidant defense (GSH). DEX challenge was associated with activation of the inflammatory pathways including TNF-α/NF-κB and NLRP3/IL-1β that were significantly dampened in the ROF groups. The oxidative stress as well as activation of inflammatory pathways exerted by DEX has contributed to the activation of endoplasmic reticulum stress (CHOP and PERK) posing more threats to the insulted cells, however, fortunately, ROF treatments showed inhibited activation of ER stress sensors and thereby abstaining the cells from inevitable damage. The metabolic abnormalities induced by DEX including elevated fasting insulin and heightened AUC of blood glucose level upon application of oral glucose tolerance test were significantly improved by ROF treatment.</div></div><div><h3>Conclusion</h3><div>The findings of our study depicted the hepatoprotective and metabolic regulating potentials of ROF in a rat model of DEX- induced steatohepatitis. Thereby, enhancing the overall efficacy and safety of DEX use in management of various disorders.</div></div>\",\"PeriodicalId\":18122,\"journal\":{\"name\":\"Life sciences\",\"volume\":\"372 \",\"pages\":\"Article 123634\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024320525002693\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525002693","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Roflumilast counteracts high-dose dexamethasone-induced steatohepatitis, metabolic abnormalities and aortic injury via inhibiting TNF-α/NF-κB, NLRP3/IL-1β and ER stress sensors
Introduction
High-dose dexamethasone (DEX) is used for management of severe conditions. However, the multisystem adverse effects induced by glucocorticoids represent a hindering stone toward the effective clinical use of such agents. Various initiatives have been taken to ameliorate these complications with limited success.
Aim
The present study aims to explore the beneficial effects of roflumilast (ROF), a phosphodiesterase-4 (PDE-4) inhibitor, to combat DEX-induced steatohepatitis, metabolic abnormalities and aortic degeneration.
Results
The application of ROF (2.5 and 5 mg/kg) has reverted the hepatic and aortic histopathological abnormalities as well as the rise in serum liver enzymes induced by DEX. Such palliative effect is probably attributed to PDE-4 inhibition (↑cAMP) that subsequently regulates multiple effectors. The chemotaxis of inflammatory cells (MCP-1) was inhibited by ROF treatments which was linked to inhibition of extracellular ROS production (MDA and NO) as well as restoration of cellular antioxidant defense (GSH). DEX challenge was associated with activation of the inflammatory pathways including TNF-α/NF-κB and NLRP3/IL-1β that were significantly dampened in the ROF groups. The oxidative stress as well as activation of inflammatory pathways exerted by DEX has contributed to the activation of endoplasmic reticulum stress (CHOP and PERK) posing more threats to the insulted cells, however, fortunately, ROF treatments showed inhibited activation of ER stress sensors and thereby abstaining the cells from inevitable damage. The metabolic abnormalities induced by DEX including elevated fasting insulin and heightened AUC of blood glucose level upon application of oral glucose tolerance test were significantly improved by ROF treatment.
Conclusion
The findings of our study depicted the hepatoprotective and metabolic regulating potentials of ROF in a rat model of DEX- induced steatohepatitis. Thereby, enhancing the overall efficacy and safety of DEX use in management of various disorders.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.