{"title":"通过水热液化、酯交换和焚烧将废物转化为燃料的技术经济和排放比较","authors":"Muhammad Usman","doi":"10.1016/j.ject.2024.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>The global shift toward sustainable waste management and renewable energy has sparked interest in biofuel production from sewage sludge (SS). This study evaluated four waste-to-biofuel processes like Hydrothermal Liquefaction (HTL) with upgrading, Transesterification, and Incineration with and without energy recovery using ASPEN Plus V12 to assess their techno-economic, energy, and environmental performance. HTL with upgrading emerged as the most efficient, generating ∼4,000,000 MJ/year and emitting ∼700 tonnes/year of CO<sub>2</sub>. Transesterification yielded ∼2,850,000 MJ/year, emitting ∼1200 tonnes/year due to post-lipid extraction incineration. Incineration without energy recovery was least efficient, consuming ∼5,000,000 MJ/year and emitting ∼3000 tonnes/year of CO<sub>2</sub>, with energy recovery yielding only ∼1,250,000 MJ/year. Financially, HTL with upgrading demonstrated strong profitability with a potential Net Present Value (NPV) of 112.9 million US dollars (MUS$), while Transesterification achieved an NPV of 23.4 MUS$. Both processes were sensitive to operating costs: a 50 % increase could reduce HTL’s NPV to 62.7 MUS$, while pushing Transesterification into a loss. Capital cost reductions could further boost HTL’s profitability, highlighting its economic resilience, unlike incineration, which remained financially unviable. In summary, HTL with upgrading offered 30 % higher energy output and 70 % lower emissions than incineration, making it a scalable, sustainable approach for SS management and biofuel production. However, a complete life cycle assessment could further enhance its potential by identifying additional environmental and economic benefits.</div></div>","PeriodicalId":100776,"journal":{"name":"Journal of Economy and Technology","volume":"3 ","pages":"Pages 237-250"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Techno-economic and emissions comparison of waste-to-fuel via hydrothermal liquefaction, transesterification, and incineration\",\"authors\":\"Muhammad Usman\",\"doi\":\"10.1016/j.ject.2024.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The global shift toward sustainable waste management and renewable energy has sparked interest in biofuel production from sewage sludge (SS). This study evaluated four waste-to-biofuel processes like Hydrothermal Liquefaction (HTL) with upgrading, Transesterification, and Incineration with and without energy recovery using ASPEN Plus V12 to assess their techno-economic, energy, and environmental performance. HTL with upgrading emerged as the most efficient, generating ∼4,000,000 MJ/year and emitting ∼700 tonnes/year of CO<sub>2</sub>. Transesterification yielded ∼2,850,000 MJ/year, emitting ∼1200 tonnes/year due to post-lipid extraction incineration. Incineration without energy recovery was least efficient, consuming ∼5,000,000 MJ/year and emitting ∼3000 tonnes/year of CO<sub>2</sub>, with energy recovery yielding only ∼1,250,000 MJ/year. Financially, HTL with upgrading demonstrated strong profitability with a potential Net Present Value (NPV) of 112.9 million US dollars (MUS$), while Transesterification achieved an NPV of 23.4 MUS$. Both processes were sensitive to operating costs: a 50 % increase could reduce HTL’s NPV to 62.7 MUS$, while pushing Transesterification into a loss. Capital cost reductions could further boost HTL’s profitability, highlighting its economic resilience, unlike incineration, which remained financially unviable. In summary, HTL with upgrading offered 30 % higher energy output and 70 % lower emissions than incineration, making it a scalable, sustainable approach for SS management and biofuel production. However, a complete life cycle assessment could further enhance its potential by identifying additional environmental and economic benefits.</div></div>\",\"PeriodicalId\":100776,\"journal\":{\"name\":\"Journal of Economy and Technology\",\"volume\":\"3 \",\"pages\":\"Pages 237-250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Economy and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949948824000556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economy and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949948824000556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Techno-economic and emissions comparison of waste-to-fuel via hydrothermal liquefaction, transesterification, and incineration
The global shift toward sustainable waste management and renewable energy has sparked interest in biofuel production from sewage sludge (SS). This study evaluated four waste-to-biofuel processes like Hydrothermal Liquefaction (HTL) with upgrading, Transesterification, and Incineration with and without energy recovery using ASPEN Plus V12 to assess their techno-economic, energy, and environmental performance. HTL with upgrading emerged as the most efficient, generating ∼4,000,000 MJ/year and emitting ∼700 tonnes/year of CO2. Transesterification yielded ∼2,850,000 MJ/year, emitting ∼1200 tonnes/year due to post-lipid extraction incineration. Incineration without energy recovery was least efficient, consuming ∼5,000,000 MJ/year and emitting ∼3000 tonnes/year of CO2, with energy recovery yielding only ∼1,250,000 MJ/year. Financially, HTL with upgrading demonstrated strong profitability with a potential Net Present Value (NPV) of 112.9 million US dollars (MUS$), while Transesterification achieved an NPV of 23.4 MUS$. Both processes were sensitive to operating costs: a 50 % increase could reduce HTL’s NPV to 62.7 MUS$, while pushing Transesterification into a loss. Capital cost reductions could further boost HTL’s profitability, highlighting its economic resilience, unlike incineration, which remained financially unviable. In summary, HTL with upgrading offered 30 % higher energy output and 70 % lower emissions than incineration, making it a scalable, sustainable approach for SS management and biofuel production. However, a complete life cycle assessment could further enhance its potential by identifying additional environmental and economic benefits.