Wuxiang Shi , Yurong Li , Nan Zheng , Wenyao Hong , Zhenhua Zhao , Wensheng Chen , Xiaojing Xue , Ting Chen
{"title":"利用时空特征融合进行电生理源成像的深度学习框架","authors":"Wuxiang Shi , Yurong Li , Nan Zheng , Wenyao Hong , Zhenhua Zhao , Wensheng Chen , Xiaojing Xue , Ting Chen","doi":"10.1016/j.cmpb.2025.108767","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objectives</h3><div>Electrophysiological source imaging (ESI) is a challenging technique for noninvasively measuring brain activity, which involves solving a highly ill-posed inverse problem. Traditional methods attempt to address this challenge by imposing various priors, but considering the complexity and dynamic nature of the brain activity, these priors may not accurately reflect the true attributes of brain sources. In this study, we propose a novel deep learning-based framework, spatiotemporal source imaging network (SSINet), designed to provide accurate spatiotemporal estimates of brain activity using electroencephalography (EEG).</div></div><div><h3>Methods</h3><div>SSINet integrates a residual network (ResBlock) for spatial feature extraction and a bidirectional LSTM for capturing temporal dynamics, fused through a Transformer module to capture global dependencies. A channel attention mechanism is employed to prioritize active brain regions, improving both the accuracy of the model and its interpretability. Additionally, a weighted loss function is introduced to address the spatial sparsity of the brain activity.</div></div><div><h3>Results</h3><div>We evaluated the performance of SSINet through numerical simulations and found that it outperformed several state-of-the-art ESI methods across various conditions, such as varying numbers of sources, source range, and signal-to-noise ratio levels. Furthermore, SSINet demonstrated robust performance even with electrode position offsets and changes in conductivity. We also validated the model on three real EEG datasets: visual, auditory, and somatosensory stimuli. The results show that the source activity reconstructed by SSINet aligns closely with the established physiological basis of brain function.</div></div><div><h3>Conclusions</h3><div>SSINet provides accurate and stable source imaging results.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"266 ","pages":"Article 108767"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning framework leveraging spatiotemporal feature fusion for electrophysiological source imaging\",\"authors\":\"Wuxiang Shi , Yurong Li , Nan Zheng , Wenyao Hong , Zhenhua Zhao , Wensheng Chen , Xiaojing Xue , Ting Chen\",\"doi\":\"10.1016/j.cmpb.2025.108767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Objectives</h3><div>Electrophysiological source imaging (ESI) is a challenging technique for noninvasively measuring brain activity, which involves solving a highly ill-posed inverse problem. Traditional methods attempt to address this challenge by imposing various priors, but considering the complexity and dynamic nature of the brain activity, these priors may not accurately reflect the true attributes of brain sources. In this study, we propose a novel deep learning-based framework, spatiotemporal source imaging network (SSINet), designed to provide accurate spatiotemporal estimates of brain activity using electroencephalography (EEG).</div></div><div><h3>Methods</h3><div>SSINet integrates a residual network (ResBlock) for spatial feature extraction and a bidirectional LSTM for capturing temporal dynamics, fused through a Transformer module to capture global dependencies. A channel attention mechanism is employed to prioritize active brain regions, improving both the accuracy of the model and its interpretability. Additionally, a weighted loss function is introduced to address the spatial sparsity of the brain activity.</div></div><div><h3>Results</h3><div>We evaluated the performance of SSINet through numerical simulations and found that it outperformed several state-of-the-art ESI methods across various conditions, such as varying numbers of sources, source range, and signal-to-noise ratio levels. Furthermore, SSINet demonstrated robust performance even with electrode position offsets and changes in conductivity. We also validated the model on three real EEG datasets: visual, auditory, and somatosensory stimuli. The results show that the source activity reconstructed by SSINet aligns closely with the established physiological basis of brain function.</div></div><div><h3>Conclusions</h3><div>SSINet provides accurate and stable source imaging results.</div></div>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":\"266 \",\"pages\":\"Article 108767\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169260725001841\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725001841","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A deep learning framework leveraging spatiotemporal feature fusion for electrophysiological source imaging
Background and Objectives
Electrophysiological source imaging (ESI) is a challenging technique for noninvasively measuring brain activity, which involves solving a highly ill-posed inverse problem. Traditional methods attempt to address this challenge by imposing various priors, but considering the complexity and dynamic nature of the brain activity, these priors may not accurately reflect the true attributes of brain sources. In this study, we propose a novel deep learning-based framework, spatiotemporal source imaging network (SSINet), designed to provide accurate spatiotemporal estimates of brain activity using electroencephalography (EEG).
Methods
SSINet integrates a residual network (ResBlock) for spatial feature extraction and a bidirectional LSTM for capturing temporal dynamics, fused through a Transformer module to capture global dependencies. A channel attention mechanism is employed to prioritize active brain regions, improving both the accuracy of the model and its interpretability. Additionally, a weighted loss function is introduced to address the spatial sparsity of the brain activity.
Results
We evaluated the performance of SSINet through numerical simulations and found that it outperformed several state-of-the-art ESI methods across various conditions, such as varying numbers of sources, source range, and signal-to-noise ratio levels. Furthermore, SSINet demonstrated robust performance even with electrode position offsets and changes in conductivity. We also validated the model on three real EEG datasets: visual, auditory, and somatosensory stimuli. The results show that the source activity reconstructed by SSINet aligns closely with the established physiological basis of brain function.
Conclusions
SSINet provides accurate and stable source imaging results.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.