Xidi Yuan , Dennis Klein , Anna-Maria Maier , Rudolf Martini
{"title":"在charco - marie - tooth 1X疾病小鼠模型中,通过重新利用fingolimod (FTY720)进行治疗性鞘氨醇-1-磷酸受体调节可减轻神经病变并改善临床结果","authors":"Xidi Yuan , Dennis Klein , Anna-Maria Maier , Rudolf Martini","doi":"10.1016/j.nmd.2025.105345","DOIUrl":null,"url":null,"abstract":"<div><div>Previous studies have shown that both the innate and adaptive immune systems foster progression of neuropathy and clinical symptoms in a mouse model for Charcot-Marie-Tooth 1X disease. Here we demonstrate a possible therapeutic translation of these findings using the clinically approved sphingosine-1-phosphate receptor modulator fingolimod (FTY720) in <em>connexin32</em>-deficient mice mimicking Charcot-Marie-Tooth 1X disease.</div><div>Treatment with FTY720 prevented an increase of CD8+ and CD4+ T-lymphocyte numbers in both femoral quadriceps nerve as well as in ventral spinal roots. While macrophages of ventral spinal roots show a similar, albeit non-significant trend, macrophages from quadriceps nerve are not reduced upon treatment. On the histopathological level, axonopathic changes were reduced in ventral spinal roots, but not in quadriceps nerves upon treatment. Electrophysiological recordings displayed improved nerve conduction parameters upon FTY720 treatment, while clinically, FTY720 treatment ameliorated distinct parameters of motor performance and grip strength. We suggest that targeting the adaptive immune system might be a pharmacological treatment option for mitigating disease burden particularly in severe cases of Charcot-Marie-Tooth 1X.</div></div>","PeriodicalId":19135,"journal":{"name":"Neuromuscular Disorders","volume":"50 ","pages":"Article 105345"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Therapeutic sphingosine-1-phosphate receptor modulation by repurposing fingolimod (FTY720) leads to mitigated neuropathy and improved clinical outcome in a mouse model for Charcot-Marie-Tooth 1X disease\",\"authors\":\"Xidi Yuan , Dennis Klein , Anna-Maria Maier , Rudolf Martini\",\"doi\":\"10.1016/j.nmd.2025.105345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Previous studies have shown that both the innate and adaptive immune systems foster progression of neuropathy and clinical symptoms in a mouse model for Charcot-Marie-Tooth 1X disease. Here we demonstrate a possible therapeutic translation of these findings using the clinically approved sphingosine-1-phosphate receptor modulator fingolimod (FTY720) in <em>connexin32</em>-deficient mice mimicking Charcot-Marie-Tooth 1X disease.</div><div>Treatment with FTY720 prevented an increase of CD8+ and CD4+ T-lymphocyte numbers in both femoral quadriceps nerve as well as in ventral spinal roots. While macrophages of ventral spinal roots show a similar, albeit non-significant trend, macrophages from quadriceps nerve are not reduced upon treatment. On the histopathological level, axonopathic changes were reduced in ventral spinal roots, but not in quadriceps nerves upon treatment. Electrophysiological recordings displayed improved nerve conduction parameters upon FTY720 treatment, while clinically, FTY720 treatment ameliorated distinct parameters of motor performance and grip strength. We suggest that targeting the adaptive immune system might be a pharmacological treatment option for mitigating disease burden particularly in severe cases of Charcot-Marie-Tooth 1X.</div></div>\",\"PeriodicalId\":19135,\"journal\":{\"name\":\"Neuromuscular Disorders\",\"volume\":\"50 \",\"pages\":\"Article 105345\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuromuscular Disorders\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960896625000720\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromuscular Disorders","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960896625000720","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Therapeutic sphingosine-1-phosphate receptor modulation by repurposing fingolimod (FTY720) leads to mitigated neuropathy and improved clinical outcome in a mouse model for Charcot-Marie-Tooth 1X disease
Previous studies have shown that both the innate and adaptive immune systems foster progression of neuropathy and clinical symptoms in a mouse model for Charcot-Marie-Tooth 1X disease. Here we demonstrate a possible therapeutic translation of these findings using the clinically approved sphingosine-1-phosphate receptor modulator fingolimod (FTY720) in connexin32-deficient mice mimicking Charcot-Marie-Tooth 1X disease.
Treatment with FTY720 prevented an increase of CD8+ and CD4+ T-lymphocyte numbers in both femoral quadriceps nerve as well as in ventral spinal roots. While macrophages of ventral spinal roots show a similar, albeit non-significant trend, macrophages from quadriceps nerve are not reduced upon treatment. On the histopathological level, axonopathic changes were reduced in ventral spinal roots, but not in quadriceps nerves upon treatment. Electrophysiological recordings displayed improved nerve conduction parameters upon FTY720 treatment, while clinically, FTY720 treatment ameliorated distinct parameters of motor performance and grip strength. We suggest that targeting the adaptive immune system might be a pharmacological treatment option for mitigating disease burden particularly in severe cases of Charcot-Marie-Tooth 1X.
期刊介绍:
This international, multidisciplinary journal covers all aspects of neuromuscular disorders in childhood and adult life (including the muscular dystrophies, spinal muscular atrophies, hereditary neuropathies, congenital myopathies, myasthenias, myotonic syndromes, metabolic myopathies and inflammatory myopathies).
The Editors welcome original articles from all areas of the field:
• Clinical aspects, such as new clinical entities, case studies of interest, treatment, management and rehabilitation (including biomechanics, orthotic design and surgery).
• Basic scientific studies of relevance to the clinical syndromes, including advances in the fields of molecular biology and genetics.
• Studies of animal models relevant to the human diseases.
The journal is aimed at a wide range of clinicians, pathologists, associated paramedical professionals and clinical and basic scientists with an interest in the study of neuromuscular disorders.