Florian Fleckenstein, Stefan Becker, Hans Hasse, Simon Stephan
{"title":"丙酮+ CO2体系的气液界面性质:实验、分子模拟、密度梯度理论和密度泛函理论","authors":"Florian Fleckenstein, Stefan Becker, Hans Hasse, Simon Stephan","doi":"10.1016/j.fluid.2025.114436","DOIUrl":null,"url":null,"abstract":"<div><div>Vapor–liquid interfacial properties of the system acetone + CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> were studied using pendant drop experiments as well as multiple theoretical approaches, namely molecular dynamics (MD) simulations, density gradient theory (DGT), and density functional theory (DFT). The surface tension as well as relative adsorption of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> were obtained from the experiments for temperatures between 303.15 K and 373.15 K. The experimental results were compared to predictions from the three theoretical approaches, which also provide insights into the structure of the interface and data on the interfacial enrichment of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and the interfacial thickness, which is not feasible by the experiments alone. The results from all three theoretical approaches are found to be in good mutual agreement as well as in agreement with the experimental results. Additionally, MD, DGT, and DFT were used to study the nanoscopic structure at the interface.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"596 ","pages":"Article 114436"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vapor–liquid interfacial properties of the system acetone + CO2: Experiments, molecular simulation, density gradient theory, and density functional theory\",\"authors\":\"Florian Fleckenstein, Stefan Becker, Hans Hasse, Simon Stephan\",\"doi\":\"10.1016/j.fluid.2025.114436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vapor–liquid interfacial properties of the system acetone + CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> were studied using pendant drop experiments as well as multiple theoretical approaches, namely molecular dynamics (MD) simulations, density gradient theory (DGT), and density functional theory (DFT). The surface tension as well as relative adsorption of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> were obtained from the experiments for temperatures between 303.15 K and 373.15 K. The experimental results were compared to predictions from the three theoretical approaches, which also provide insights into the structure of the interface and data on the interfacial enrichment of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and the interfacial thickness, which is not feasible by the experiments alone. The results from all three theoretical approaches are found to be in good mutual agreement as well as in agreement with the experimental results. Additionally, MD, DGT, and DFT were used to study the nanoscopic structure at the interface.</div></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"596 \",\"pages\":\"Article 114436\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381225001062\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381225001062","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Vapor–liquid interfacial properties of the system acetone + CO2: Experiments, molecular simulation, density gradient theory, and density functional theory
Vapor–liquid interfacial properties of the system acetone + CO were studied using pendant drop experiments as well as multiple theoretical approaches, namely molecular dynamics (MD) simulations, density gradient theory (DGT), and density functional theory (DFT). The surface tension as well as relative adsorption of CO were obtained from the experiments for temperatures between 303.15 K and 373.15 K. The experimental results were compared to predictions from the three theoretical approaches, which also provide insights into the structure of the interface and data on the interfacial enrichment of CO and the interfacial thickness, which is not feasible by the experiments alone. The results from all three theoretical approaches are found to be in good mutual agreement as well as in agreement with the experimental results. Additionally, MD, DGT, and DFT were used to study the nanoscopic structure at the interface.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.