带非交换系数的缓变时滞ψ分数系统解的表示

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Mustafa Aydin , Nazim I. Mahmudov
{"title":"带非交换系数的缓变时滞ψ分数系统解的表示","authors":"Mustafa Aydin ,&nbsp;Nazim I. Mahmudov","doi":"10.1016/j.chaos.2025.116392","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on deriving explicit solutions for tempered delayed fractional differential systems that utilize Caputo fractional derivatives in relation to another function. To achieve this, we define tempered <span><math><mi>ψ</mi></math></span>-delayed perturbations of Mittag-Leffler type functions and explore their <span><math><mi>ψ</mi></math></span>-Laplace transforms. Additionally, we discuss theorems related to shifting and time-delay in the context of <span><math><mi>ψ</mi></math></span>-Laplace transforms. Utilizing the tempered <span><math><mi>ψ</mi></math></span>-delayed perturbational function, we establish a representation of explicit solutions for the system through the Laplace transform method. This representation is validated by demonstrating that it satisfies the system, alongside employing the method of variation of constants. Several novel special cases are introduced, and a numerical example is provided to demonstrate the practical application of the results obtained.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":"Article 116392"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representation of solutions to tempered delayed ψ-fractional systems with noncommutative coefficients\",\"authors\":\"Mustafa Aydin ,&nbsp;Nazim I. Mahmudov\",\"doi\":\"10.1016/j.chaos.2025.116392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on deriving explicit solutions for tempered delayed fractional differential systems that utilize Caputo fractional derivatives in relation to another function. To achieve this, we define tempered <span><math><mi>ψ</mi></math></span>-delayed perturbations of Mittag-Leffler type functions and explore their <span><math><mi>ψ</mi></math></span>-Laplace transforms. Additionally, we discuss theorems related to shifting and time-delay in the context of <span><math><mi>ψ</mi></math></span>-Laplace transforms. Utilizing the tempered <span><math><mi>ψ</mi></math></span>-delayed perturbational function, we establish a representation of explicit solutions for the system through the Laplace transform method. This representation is validated by demonstrating that it satisfies the system, alongside employing the method of variation of constants. Several novel special cases are introduced, and a numerical example is provided to demonstrate the practical application of the results obtained.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"196 \",\"pages\":\"Article 116392\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925004059\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004059","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类缓变时滞分数阶微分系统的显式解,该系统对另一个函数利用卡普托分数阶导数。为了达到这个目的,我们定义了Mittag-Leffler型函数的调质ψ延迟微扰,并探索了它们的ψ拉普拉斯变换。此外,我们讨论了在ψ-拉普拉斯变换的背景下,移位和时滞的相关定理。利用调质后的ψ-时滞微扰函数,通过拉普拉斯变换建立了系统显式解的表示形式。通过证明它满足系统,并采用常数变分法,验证了这种表示。介绍了几种新的特殊情况,并通过数值算例说明了所得结果的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation of solutions to tempered delayed ψ-fractional systems with noncommutative coefficients
This paper focuses on deriving explicit solutions for tempered delayed fractional differential systems that utilize Caputo fractional derivatives in relation to another function. To achieve this, we define tempered ψ-delayed perturbations of Mittag-Leffler type functions and explore their ψ-Laplace transforms. Additionally, we discuss theorems related to shifting and time-delay in the context of ψ-Laplace transforms. Utilizing the tempered ψ-delayed perturbational function, we establish a representation of explicit solutions for the system through the Laplace transform method. This representation is validated by demonstrating that it satisfies the system, alongside employing the method of variation of constants. Several novel special cases are introduced, and a numerical example is provided to demonstrate the practical application of the results obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信