Yuxin Huang, Chunping Li, Yan Xiang, Yantuan Xian, Pu Li, Zhengtao Yu
{"title":"基于结构熵的大规模网络影响节点识别方法","authors":"Yuxin Huang, Chunping Li, Yan Xiang, Yantuan Xian, Pu Li, Zhengtao Yu","doi":"10.1016/j.chaos.2025.116411","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying influential nodes in large-scale networks is a pivotal challenge in network analysis. Traditional node identification methods, such as those based on node degree, primarily emphasize local neighbors without considering a node’s global importance within the network. Conversely, global feature-based methods like betweenness centrality (BC) are computationally prohibitive for large-scale networks. To address these limitations, we propose a novel community-level node influence calculation method grounded in structural entropy. This approach integrates both local significance within a community and global influence across communities. The method begins by employing community detection algorithms to cluster closely related nodes into communities. Subsequently, node influence is quantified by analyzing changes in structural entropy resulting from a node’s departure from its community and its integration into an adjacent community. Experimental evaluations on eleven real-world networks demonstrate that our method reduces the computational time for influential node identification by a factor of 76 compared to BC and other conventional approaches. Furthermore, in a network comprising seventy thousand nodes, our method enhances network efficiency by 20% relative to the LE method, underscoring its efficiency and effectiveness.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":"Article 116411"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective and efficient identifying influential nodes in large scale networks by structural entropy\",\"authors\":\"Yuxin Huang, Chunping Li, Yan Xiang, Yantuan Xian, Pu Li, Zhengtao Yu\",\"doi\":\"10.1016/j.chaos.2025.116411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Identifying influential nodes in large-scale networks is a pivotal challenge in network analysis. Traditional node identification methods, such as those based on node degree, primarily emphasize local neighbors without considering a node’s global importance within the network. Conversely, global feature-based methods like betweenness centrality (BC) are computationally prohibitive for large-scale networks. To address these limitations, we propose a novel community-level node influence calculation method grounded in structural entropy. This approach integrates both local significance within a community and global influence across communities. The method begins by employing community detection algorithms to cluster closely related nodes into communities. Subsequently, node influence is quantified by analyzing changes in structural entropy resulting from a node’s departure from its community and its integration into an adjacent community. Experimental evaluations on eleven real-world networks demonstrate that our method reduces the computational time for influential node identification by a factor of 76 compared to BC and other conventional approaches. Furthermore, in a network comprising seventy thousand nodes, our method enhances network efficiency by 20% relative to the LE method, underscoring its efficiency and effectiveness.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"196 \",\"pages\":\"Article 116411\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925004242\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004242","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Effective and efficient identifying influential nodes in large scale networks by structural entropy
Identifying influential nodes in large-scale networks is a pivotal challenge in network analysis. Traditional node identification methods, such as those based on node degree, primarily emphasize local neighbors without considering a node’s global importance within the network. Conversely, global feature-based methods like betweenness centrality (BC) are computationally prohibitive for large-scale networks. To address these limitations, we propose a novel community-level node influence calculation method grounded in structural entropy. This approach integrates both local significance within a community and global influence across communities. The method begins by employing community detection algorithms to cluster closely related nodes into communities. Subsequently, node influence is quantified by analyzing changes in structural entropy resulting from a node’s departure from its community and its integration into an adjacent community. Experimental evaluations on eleven real-world networks demonstrate that our method reduces the computational time for influential node identification by a factor of 76 compared to BC and other conventional approaches. Furthermore, in a network comprising seventy thousand nodes, our method enhances network efficiency by 20% relative to the LE method, underscoring its efficiency and effectiveness.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.