{"title":"虚拟大鼠网:用于各种环境下药理学教育的多功能模拟工具","authors":"Shiko Okabe , Taichiro Goto , Daisuke Hirayama , Yuhei Nishimura","doi":"10.1016/j.ejphar.2025.177618","DOIUrl":null,"url":null,"abstract":"<div><div>Education and outreach activities are crucial elements in the popularization of various scientific fields, including pharmacology. Simulation-based learning can impart scientific knowledge and stimulate critical thinking in both children and adults. Here, we developed a standalone web-based simulation tool, Virtual Rat Web (VRW), to promote a greater understanding of pharmacology and assessed its usefulness in educational and outreach settings. VRW is a web-based application based on the source code of RatCVS, a program developed by Dr. John Dempster (University of Strathclyde) to model cardiovascular pharmacology. We evaluated VRW as part of a model pharmacology class taught to high-school students, and elementary/junior high-school students or older students attending university outreach classes. The two older student groups were given a 60-min class consisting of a brief introduction to drug effects on the cardiovascular system, training on the use of VRW, and a hands-on exercise using VRW to identify noradrenaline and acetylcholine from a panel of anonymized drugs based on their dose-response patterns. Most students correctly identified the effects of noradrenaline and acetylcholine and found VRW to be a more useful learning tool than a passive lecture. The elementary/junior high-school students received a 120-min class combining real-time visualization of the effects of adrenaline and propranolol on the heart rate of zebrafish larvae and hands-on use of VRW to confirm the <em>in vivo</em> observations. This cohort found the strength of VRW in understanding the dose-response. These findings suggest that VRW may be a versatile tool for pharmacology education in various settings.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"997 ","pages":"Article 177618"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual rat web: A versatile simulation tool for pharmacology education in a variety of settings\",\"authors\":\"Shiko Okabe , Taichiro Goto , Daisuke Hirayama , Yuhei Nishimura\",\"doi\":\"10.1016/j.ejphar.2025.177618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Education and outreach activities are crucial elements in the popularization of various scientific fields, including pharmacology. Simulation-based learning can impart scientific knowledge and stimulate critical thinking in both children and adults. Here, we developed a standalone web-based simulation tool, Virtual Rat Web (VRW), to promote a greater understanding of pharmacology and assessed its usefulness in educational and outreach settings. VRW is a web-based application based on the source code of RatCVS, a program developed by Dr. John Dempster (University of Strathclyde) to model cardiovascular pharmacology. We evaluated VRW as part of a model pharmacology class taught to high-school students, and elementary/junior high-school students or older students attending university outreach classes. The two older student groups were given a 60-min class consisting of a brief introduction to drug effects on the cardiovascular system, training on the use of VRW, and a hands-on exercise using VRW to identify noradrenaline and acetylcholine from a panel of anonymized drugs based on their dose-response patterns. Most students correctly identified the effects of noradrenaline and acetylcholine and found VRW to be a more useful learning tool than a passive lecture. The elementary/junior high-school students received a 120-min class combining real-time visualization of the effects of adrenaline and propranolol on the heart rate of zebrafish larvae and hands-on use of VRW to confirm the <em>in vivo</em> observations. This cohort found the strength of VRW in understanding the dose-response. These findings suggest that VRW may be a versatile tool for pharmacology education in various settings.</div></div>\",\"PeriodicalId\":12004,\"journal\":{\"name\":\"European journal of pharmacology\",\"volume\":\"997 \",\"pages\":\"Article 177618\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014299925003723\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925003723","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Virtual rat web: A versatile simulation tool for pharmacology education in a variety of settings
Education and outreach activities are crucial elements in the popularization of various scientific fields, including pharmacology. Simulation-based learning can impart scientific knowledge and stimulate critical thinking in both children and adults. Here, we developed a standalone web-based simulation tool, Virtual Rat Web (VRW), to promote a greater understanding of pharmacology and assessed its usefulness in educational and outreach settings. VRW is a web-based application based on the source code of RatCVS, a program developed by Dr. John Dempster (University of Strathclyde) to model cardiovascular pharmacology. We evaluated VRW as part of a model pharmacology class taught to high-school students, and elementary/junior high-school students or older students attending university outreach classes. The two older student groups were given a 60-min class consisting of a brief introduction to drug effects on the cardiovascular system, training on the use of VRW, and a hands-on exercise using VRW to identify noradrenaline and acetylcholine from a panel of anonymized drugs based on their dose-response patterns. Most students correctly identified the effects of noradrenaline and acetylcholine and found VRW to be a more useful learning tool than a passive lecture. The elementary/junior high-school students received a 120-min class combining real-time visualization of the effects of adrenaline and propranolol on the heart rate of zebrafish larvae and hands-on use of VRW to confirm the in vivo observations. This cohort found the strength of VRW in understanding the dose-response. These findings suggest that VRW may be a versatile tool for pharmacology education in various settings.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.