混合聚类增强的可解释机器学习用于激光粉末床熔合Ti-6Al-4V合金不同循环阶段的疲劳寿命预测

IF 5.7 2区 材料科学 Q1 ENGINEERING, MECHANICAL
Aihua Yu , Qingjun Zhou , Yu Pan , Fucheng Wan , Fan Kuang , Xin Lu
{"title":"混合聚类增强的可解释机器学习用于激光粉末床熔合Ti-6Al-4V合金不同循环阶段的疲劳寿命预测","authors":"Aihua Yu ,&nbsp;Qingjun Zhou ,&nbsp;Yu Pan ,&nbsp;Fucheng Wan ,&nbsp;Fan Kuang ,&nbsp;Xin Lu","doi":"10.1016/j.ijfatigue.2025.108995","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting the fatigue life of parts fabricated by laser powder bed fusion (LPBF) is essential for assessing their durability and reliability in mission-critical load-bearing structures. Herein, we propose a novel machine learning (ML) strategy for predicting fatigue life of LPBF parts. It combines three-stage feature screening, data augmentation, a hybrid clustering integrated regression model (H-CIRM) and SHapley Additive exPlanations (SHAP) method. The optimal number of clusters is 3, and tailored models for each cluster are gradient boosting decision trees (coefficient of determination, <em>R<sup>2</sup></em> = 0.951), random forest (<em>R<sup>2</sup></em> = 0.930) and extreme gradient boosting (<em>R<sup>2</sup></em> = 0.877), respectively. H-CIRM outperforms separate models across various cyclic stages, achieving an overall increase of over 4 % in <em>R<sup>2</sup></em> and a 22 % decrease in mean absolute error (<em>MAE</em>). The relative error is within ± 10 % on an additional experimental dataset. This strategic clustering effectively improves predicted accuracy for each cluster, markedly enhancing overall predictive. SHAP elucidates that stress amplitude (<em>σ<sub>a</sub></em>) and the complex interactions between density (<em>ρ</em>), laser volume energy density (<em>E<sub>V</sub></em>), and <em>σ<sub>a</sub></em> are the top three factors affecting fatigue life, with a relative importance greater than 20 %. This work develops a robust model for estimating fatigue life of LPBF parts and provides valuable insights into optimizing process parameters.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"198 ","pages":"Article 108995"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid clustering-enhanced interpretable machine learning for fatigue life prediction across various cyclic stages in laser powder bed fused Ti-6Al-4V alloy\",\"authors\":\"Aihua Yu ,&nbsp;Qingjun Zhou ,&nbsp;Yu Pan ,&nbsp;Fucheng Wan ,&nbsp;Fan Kuang ,&nbsp;Xin Lu\",\"doi\":\"10.1016/j.ijfatigue.2025.108995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Predicting the fatigue life of parts fabricated by laser powder bed fusion (LPBF) is essential for assessing their durability and reliability in mission-critical load-bearing structures. Herein, we propose a novel machine learning (ML) strategy for predicting fatigue life of LPBF parts. It combines three-stage feature screening, data augmentation, a hybrid clustering integrated regression model (H-CIRM) and SHapley Additive exPlanations (SHAP) method. The optimal number of clusters is 3, and tailored models for each cluster are gradient boosting decision trees (coefficient of determination, <em>R<sup>2</sup></em> = 0.951), random forest (<em>R<sup>2</sup></em> = 0.930) and extreme gradient boosting (<em>R<sup>2</sup></em> = 0.877), respectively. H-CIRM outperforms separate models across various cyclic stages, achieving an overall increase of over 4 % in <em>R<sup>2</sup></em> and a 22 % decrease in mean absolute error (<em>MAE</em>). The relative error is within ± 10 % on an additional experimental dataset. This strategic clustering effectively improves predicted accuracy for each cluster, markedly enhancing overall predictive. SHAP elucidates that stress amplitude (<em>σ<sub>a</sub></em>) and the complex interactions between density (<em>ρ</em>), laser volume energy density (<em>E<sub>V</sub></em>), and <em>σ<sub>a</sub></em> are the top three factors affecting fatigue life, with a relative importance greater than 20 %. This work develops a robust model for estimating fatigue life of LPBF parts and provides valuable insights into optimizing process parameters.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"198 \",\"pages\":\"Article 108995\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112325001926\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112325001926","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

预测激光粉末床熔合(LPBF)制造零件的疲劳寿命是评估其耐久性和可靠性的关键。在此,我们提出了一种新的机器学习(ML)策略来预测LPBF零件的疲劳寿命。它结合了三阶段特征筛选、数据增强、混合聚类综合回归模型(H-CIRM)和SHapley加性解释(SHAP)方法。最优聚类数为3个,每个聚类的定制模型分别为梯度增强决策树(决定系数R2 = 0.951)、随机森林(R2 = 0.930)和极端梯度增强(R2 = 0.877)。在不同的循环阶段,H-CIRM优于单独的模型,R2总体增加超过4%,平均绝对误差(MAE)降低22%。在另一个实验数据集上,相对误差在±10%以内。这种策略聚类有效地提高了每个聚类的预测精度,显著提高了整体的预测能力。应力幅值(σa)以及密度(ρ)、激光体积能量密度(EV)和σa之间的复杂相互作用是影响疲劳寿命的前3个因素,相对重要性大于20%。这项工作为估计LPBF零件的疲劳寿命建立了一个稳健的模型,并为优化工艺参数提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid clustering-enhanced interpretable machine learning for fatigue life prediction across various cyclic stages in laser powder bed fused Ti-6Al-4V alloy
Predicting the fatigue life of parts fabricated by laser powder bed fusion (LPBF) is essential for assessing their durability and reliability in mission-critical load-bearing structures. Herein, we propose a novel machine learning (ML) strategy for predicting fatigue life of LPBF parts. It combines three-stage feature screening, data augmentation, a hybrid clustering integrated regression model (H-CIRM) and SHapley Additive exPlanations (SHAP) method. The optimal number of clusters is 3, and tailored models for each cluster are gradient boosting decision trees (coefficient of determination, R2 = 0.951), random forest (R2 = 0.930) and extreme gradient boosting (R2 = 0.877), respectively. H-CIRM outperforms separate models across various cyclic stages, achieving an overall increase of over 4 % in R2 and a 22 % decrease in mean absolute error (MAE). The relative error is within ± 10 % on an additional experimental dataset. This strategic clustering effectively improves predicted accuracy for each cluster, markedly enhancing overall predictive. SHAP elucidates that stress amplitude (σa) and the complex interactions between density (ρ), laser volume energy density (EV), and σa are the top three factors affecting fatigue life, with a relative importance greater than 20 %. This work develops a robust model for estimating fatigue life of LPBF parts and provides valuable insights into optimizing process parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fatigue
International Journal of Fatigue 工程技术-材料科学:综合
CiteScore
10.70
自引率
21.70%
发文量
619
审稿时长
58 days
期刊介绍: Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信