Zhenhua Nie , Qianying Guo , Jun Chai , Zitao Chen , Jianwei Li , Haokai Dong , Ran Ding , Chenxi Liu , Zongqing Ma , Xuezeng Tian , Hao Chen , Yongchang Liu
{"title":"GH4099析出强化镍基高温合金γ′相形成机制","authors":"Zhenhua Nie , Qianying Guo , Jun Chai , Zitao Chen , Jianwei Li , Haokai Dong , Ran Ding , Chenxi Liu , Zongqing Ma , Xuezeng Tian , Hao Chen , Yongchang Liu","doi":"10.1016/j.scriptamat.2025.116702","DOIUrl":null,"url":null,"abstract":"<div><div>The strengthening phases in Ni-based superalloys are the key structures for providing excellent high-temperature mechanical properties, and a current lack of understanding of the very initial step-to-step formation mechanisms for these phases hinders their applications in advanced manufacturing. Here we report the initial formation mechanism of the γ' phase in the GH4099 Ni-based superalloy, which differs from the reported classical and non-classical nucleation theories. Based on the experimental observations, preferable bondings between γ' elements will induce the Al-Al and Ti-Ti clustering, acting as the starting mechanism in the chemical homogeneous superalloy. This spinodal-like chemical modulation causes the uphill diffusion of the γ' elements into the clusters and reduces the energy barrier of the chemical ordering of the γ' phase in them. This transitional initial formation mechanism of the strengthening phase in this alloy will provide a foundamental theory to design the novel superalloys for advanced manufacturing and processing.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"264 ","pages":"Article 116702"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Initial γ' phase formation mechanism in a GH4099 precipitation strengthened nickel-based superalloy\",\"authors\":\"Zhenhua Nie , Qianying Guo , Jun Chai , Zitao Chen , Jianwei Li , Haokai Dong , Ran Ding , Chenxi Liu , Zongqing Ma , Xuezeng Tian , Hao Chen , Yongchang Liu\",\"doi\":\"10.1016/j.scriptamat.2025.116702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The strengthening phases in Ni-based superalloys are the key structures for providing excellent high-temperature mechanical properties, and a current lack of understanding of the very initial step-to-step formation mechanisms for these phases hinders their applications in advanced manufacturing. Here we report the initial formation mechanism of the γ' phase in the GH4099 Ni-based superalloy, which differs from the reported classical and non-classical nucleation theories. Based on the experimental observations, preferable bondings between γ' elements will induce the Al-Al and Ti-Ti clustering, acting as the starting mechanism in the chemical homogeneous superalloy. This spinodal-like chemical modulation causes the uphill diffusion of the γ' elements into the clusters and reduces the energy barrier of the chemical ordering of the γ' phase in them. This transitional initial formation mechanism of the strengthening phase in this alloy will provide a foundamental theory to design the novel superalloys for advanced manufacturing and processing.</div></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"264 \",\"pages\":\"Article 116702\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646225001654\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225001654","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Initial γ' phase formation mechanism in a GH4099 precipitation strengthened nickel-based superalloy
The strengthening phases in Ni-based superalloys are the key structures for providing excellent high-temperature mechanical properties, and a current lack of understanding of the very initial step-to-step formation mechanisms for these phases hinders their applications in advanced manufacturing. Here we report the initial formation mechanism of the γ' phase in the GH4099 Ni-based superalloy, which differs from the reported classical and non-classical nucleation theories. Based on the experimental observations, preferable bondings between γ' elements will induce the Al-Al and Ti-Ti clustering, acting as the starting mechanism in the chemical homogeneous superalloy. This spinodal-like chemical modulation causes the uphill diffusion of the γ' elements into the clusters and reduces the energy barrier of the chemical ordering of the γ' phase in them. This transitional initial formation mechanism of the strengthening phase in this alloy will provide a foundamental theory to design the novel superalloys for advanced manufacturing and processing.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.