改进的Wasserstein GAN- gp模型与最先进的GAN模型在RGB和红外域合成农业杂草图像的比较评价

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-04-09 DOI:10.1016/j.mex.2025.103309
Shubham Rana, Matteo Gatti
{"title":"改进的Wasserstein GAN- gp模型与最先进的GAN模型在RGB和红外域合成农业杂草图像的比较评价","authors":"Shubham Rana,&nbsp;Matteo Gatti","doi":"10.1016/j.mex.2025.103309","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the application of modified Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-GP) to generate synthetic RGB and infrared (IR) datasets to meet the annotation requirements for wild radish (Raphanus raphanistrum). The RafanoSet dataset was used for evaluation. Traditional WGAN models struggle with vanishing gradients and poor convergence, affecting data quality. Customizations in WGAN-GP improved synthetic image quality, especially in maintaining SSIM for RGB datasets. However, generating high-quality IR images remains challenging due to spectral complexities, with lower SSIM scores. Architectural enhancements including transposed convolutions, dropout, and selective batch normalization improved SSIM scores from 0.5364 to 0.6615 for RGB and from 0.3306 to 0.4154 for IR images. This study highlights the customized model's key features:<ul><li><span>•</span><span><div>Produces a 128 × 7 × 7 tensor, optimizes feature map size for subsequent layers, with two layers using 4 × 4 kernels and 128 and 64 filters for upsampling.</div></span></li><li><span>•</span><span><div>Uses 3 × 3 kernels in all convolutional layers to capture fine-grained spatial features, incorporates batch normalization for training stability, and applies dropout to reduce overfitting and improve generalization.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103309"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Evaluation of Modified Wasserstein GAN-GP and State-of-the-Art GAN Models for Synthesizing Agricultural Weed Images in RGB and Infrared Domain\",\"authors\":\"Shubham Rana,&nbsp;Matteo Gatti\",\"doi\":\"10.1016/j.mex.2025.103309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the application of modified Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-GP) to generate synthetic RGB and infrared (IR) datasets to meet the annotation requirements for wild radish (Raphanus raphanistrum). The RafanoSet dataset was used for evaluation. Traditional WGAN models struggle with vanishing gradients and poor convergence, affecting data quality. Customizations in WGAN-GP improved synthetic image quality, especially in maintaining SSIM for RGB datasets. However, generating high-quality IR images remains challenging due to spectral complexities, with lower SSIM scores. Architectural enhancements including transposed convolutions, dropout, and selective batch normalization improved SSIM scores from 0.5364 to 0.6615 for RGB and from 0.3306 to 0.4154 for IR images. This study highlights the customized model's key features:<ul><li><span>•</span><span><div>Produces a 128 × 7 × 7 tensor, optimizes feature map size for subsequent layers, with two layers using 4 × 4 kernels and 128 and 64 filters for upsampling.</div></span></li><li><span>•</span><span><div>Uses 3 × 3 kernels in all convolutional layers to capture fine-grained spatial features, incorporates batch normalization for training stability, and applies dropout to reduce overfitting and improve generalization.</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"14 \",\"pages\":\"Article 103309\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016125001554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125001554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了带梯度惩罚(WGAN-GP)的改进型瓦瑟斯坦生成对抗网络(Wasserstein Generative Adversarial Networks with Gradient Penalty)在生成合成 RGB 和红外(IR)数据集方面的应用,以满足野生萝卜(Raphanus raphanistrum)的标注要求。RafanoSet 数据集用于评估。传统的 WGAN 模型存在梯度消失和收敛性差的问题,影响了数据质量。WGAN-GP 中的定制功能提高了合成图像的质量,尤其是在保持 RGB 数据集的 SSIM 方面。然而,由于光谱的复杂性,生成高质量的红外图像仍然具有挑战性,SSIM 分数较低。包括转置卷积、滤除和选择性批量归一化在内的架构增强功能将 RGB 图像的 SSIM 分数从 0.5364 提高到 0.6615,将红外图像的 SSIM 分数从 0.3306 提高到 0.4154。这项研究强调了定制模型的主要特点:-生成 128 × 7 × 7 张量,优化后续层的特征图大小,其中两层使用 4 × 4 内核和 128 及 64 滤波器进行上采样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparative Evaluation of Modified Wasserstein GAN-GP and State-of-the-Art GAN Models for Synthesizing Agricultural Weed Images in RGB and Infrared Domain

Comparative Evaluation of Modified Wasserstein GAN-GP and State-of-the-Art GAN Models for Synthesizing Agricultural Weed Images in RGB and Infrared Domain
This study investigates the application of modified Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-GP) to generate synthetic RGB and infrared (IR) datasets to meet the annotation requirements for wild radish (Raphanus raphanistrum). The RafanoSet dataset was used for evaluation. Traditional WGAN models struggle with vanishing gradients and poor convergence, affecting data quality. Customizations in WGAN-GP improved synthetic image quality, especially in maintaining SSIM for RGB datasets. However, generating high-quality IR images remains challenging due to spectral complexities, with lower SSIM scores. Architectural enhancements including transposed convolutions, dropout, and selective batch normalization improved SSIM scores from 0.5364 to 0.6615 for RGB and from 0.3306 to 0.4154 for IR images. This study highlights the customized model's key features:
  • Produces a 128 × 7 × 7 tensor, optimizes feature map size for subsequent layers, with two layers using 4 × 4 kernels and 128 and 64 filters for upsampling.
  • Uses 3 × 3 kernels in all convolutional layers to capture fine-grained spatial features, incorporates batch normalization for training stability, and applies dropout to reduce overfitting and improve generalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信