Shobha Kumari, Rajesh Pradhan, Sunil Kumar Dubey and Rajeev Taliyan*,
{"title":"表观遗传调节剂地西他滨对6-羟多巴胺诱导的帕金森病实验模型治疗潜力的探索","authors":"Shobha Kumari, Rajesh Pradhan, Sunil Kumar Dubey and Rajeev Taliyan*, ","doi":"10.1021/acschemneuro.4c0087510.1021/acschemneuro.4c00875","DOIUrl":null,"url":null,"abstract":"<p >Parkinson’s disease (PD) poses a global menace, as the available treatment methods solely aim to mitigate symptoms. An effective strategy to address the pathogenesis of PD involves eliminating the accumulation of aggregated alpha-synuclein, emphasizing the role of epigenetics. Aberrant epigenetic changes significantly influence gene expression, which is pivotal in PD progression, impacting neuronal growth and degeneration. Epigenetic-related genes are regulated by histone modification and DNA methylation processes. Nevertheless, their significance in PD has not been confirmed. This research was carried out using both in vitro and in vivo approaches. In the in vitro investigations, N2A neuronal cell lines were utilized, and the neuroprotective effect of decitabine (DB) was observed at concentrations of 0.1 μM and 0.5 μM. In the in vivo study, PD induction led to significant motor deficits, which were notably ameliorated at the highest treatment dose. This improvement was accompanied by a marked attenuation of inflammatory mediators, including TNF-α, IL-6, IL-1β, and CRP levels. Additionally, there was a significant enhancement in antioxidative defense, evidenced by increased GSH (glutathione) levels and reduced oxidative stress marker NO (nitric oxide). Neurochemical analysis revealed a substantial rise in dopamine levels, a critical PD marker, alongside an elevation in BDNF, indicating neuroprotective effects. Furthermore, gene expression analysis indicated a notable upregulation in the mRNA expression of epigenetic genes and proteins linked to PD pathology. Histological assessments, including IHC, H&E, and CV staining of the substantia nigra, showed enhanced structural integrity following treatment. Collectively, these insights reveal DB’s promise as a therapeutic solution for mitigating PD symptoms and pathology exacerbated by 6-OHDA.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"16 8","pages":"1481–1499 1481–1499"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of the Therapeutic Potential of the Epigenetic Modulator Decitabine on 6-OHDA-Induced Experimental Models of Parkinson’s Disease\",\"authors\":\"Shobha Kumari, Rajesh Pradhan, Sunil Kumar Dubey and Rajeev Taliyan*, \",\"doi\":\"10.1021/acschemneuro.4c0087510.1021/acschemneuro.4c00875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Parkinson’s disease (PD) poses a global menace, as the available treatment methods solely aim to mitigate symptoms. An effective strategy to address the pathogenesis of PD involves eliminating the accumulation of aggregated alpha-synuclein, emphasizing the role of epigenetics. Aberrant epigenetic changes significantly influence gene expression, which is pivotal in PD progression, impacting neuronal growth and degeneration. Epigenetic-related genes are regulated by histone modification and DNA methylation processes. Nevertheless, their significance in PD has not been confirmed. This research was carried out using both in vitro and in vivo approaches. In the in vitro investigations, N2A neuronal cell lines were utilized, and the neuroprotective effect of decitabine (DB) was observed at concentrations of 0.1 μM and 0.5 μM. In the in vivo study, PD induction led to significant motor deficits, which were notably ameliorated at the highest treatment dose. This improvement was accompanied by a marked attenuation of inflammatory mediators, including TNF-α, IL-6, IL-1β, and CRP levels. Additionally, there was a significant enhancement in antioxidative defense, evidenced by increased GSH (glutathione) levels and reduced oxidative stress marker NO (nitric oxide). Neurochemical analysis revealed a substantial rise in dopamine levels, a critical PD marker, alongside an elevation in BDNF, indicating neuroprotective effects. Furthermore, gene expression analysis indicated a notable upregulation in the mRNA expression of epigenetic genes and proteins linked to PD pathology. Histological assessments, including IHC, H&E, and CV staining of the substantia nigra, showed enhanced structural integrity following treatment. Collectively, these insights reveal DB’s promise as a therapeutic solution for mitigating PD symptoms and pathology exacerbated by 6-OHDA.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\"16 8\",\"pages\":\"1481–1499 1481–1499\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acschemneuro.4c00875\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschemneuro.4c00875","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploration of the Therapeutic Potential of the Epigenetic Modulator Decitabine on 6-OHDA-Induced Experimental Models of Parkinson’s Disease
Parkinson’s disease (PD) poses a global menace, as the available treatment methods solely aim to mitigate symptoms. An effective strategy to address the pathogenesis of PD involves eliminating the accumulation of aggregated alpha-synuclein, emphasizing the role of epigenetics. Aberrant epigenetic changes significantly influence gene expression, which is pivotal in PD progression, impacting neuronal growth and degeneration. Epigenetic-related genes are regulated by histone modification and DNA methylation processes. Nevertheless, their significance in PD has not been confirmed. This research was carried out using both in vitro and in vivo approaches. In the in vitro investigations, N2A neuronal cell lines were utilized, and the neuroprotective effect of decitabine (DB) was observed at concentrations of 0.1 μM and 0.5 μM. In the in vivo study, PD induction led to significant motor deficits, which were notably ameliorated at the highest treatment dose. This improvement was accompanied by a marked attenuation of inflammatory mediators, including TNF-α, IL-6, IL-1β, and CRP levels. Additionally, there was a significant enhancement in antioxidative defense, evidenced by increased GSH (glutathione) levels and reduced oxidative stress marker NO (nitric oxide). Neurochemical analysis revealed a substantial rise in dopamine levels, a critical PD marker, alongside an elevation in BDNF, indicating neuroprotective effects. Furthermore, gene expression analysis indicated a notable upregulation in the mRNA expression of epigenetic genes and proteins linked to PD pathology. Histological assessments, including IHC, H&E, and CV staining of the substantia nigra, showed enhanced structural integrity following treatment. Collectively, these insights reveal DB’s promise as a therapeutic solution for mitigating PD symptoms and pathology exacerbated by 6-OHDA.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research