{"title":"树状图上分数享乐博弈的功利与平等福利最大化","authors":"Tesshu Hanaka, Airi Ikeyama, Hirotaka Ono","doi":"10.1007/s10878-025-01283-6","DOIUrl":null,"url":null,"abstract":"<p>Fractional hedonic games are coalition formation games where a player’s utility is determined by the average value they assign to the members of their coalition. These games are a variation of graph hedonic games, which are a class of coalition formation games that can be succinctly represented. Due to their applicability in network clustering and their relationship to graph hedonic games, fractional hedonic games have been extensively studied from various perspectives. However, finding welfare-maximizing partitions in fractional hedonic games is a challenging task due to the nonlinearity of utilities. In fact, it has been proven to be NP-hard and can be solved in polynomial time only for a limited number of graph classes, such as trees. This paper presents (pseudo)polynomial-time algorithms to compute welfare-maximizing partitions in fractional hedonic games on tree-like graphs. We consider two types of social welfare measures: utilitarian and egalitarian. Tree-like graphs refer to graphs with bounded treewidth and block graphs. A hardness result is provided, demonstrating that the pseudopolynomial-time solvability is the best possible under the assumption P <span>\\(\\ne \\)</span> NP.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"26 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing utilitarian and Egalitarian welfare of fractional hedonic games on tree-like graphs\",\"authors\":\"Tesshu Hanaka, Airi Ikeyama, Hirotaka Ono\",\"doi\":\"10.1007/s10878-025-01283-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fractional hedonic games are coalition formation games where a player’s utility is determined by the average value they assign to the members of their coalition. These games are a variation of graph hedonic games, which are a class of coalition formation games that can be succinctly represented. Due to their applicability in network clustering and their relationship to graph hedonic games, fractional hedonic games have been extensively studied from various perspectives. However, finding welfare-maximizing partitions in fractional hedonic games is a challenging task due to the nonlinearity of utilities. In fact, it has been proven to be NP-hard and can be solved in polynomial time only for a limited number of graph classes, such as trees. This paper presents (pseudo)polynomial-time algorithms to compute welfare-maximizing partitions in fractional hedonic games on tree-like graphs. We consider two types of social welfare measures: utilitarian and egalitarian. Tree-like graphs refer to graphs with bounded treewidth and block graphs. A hardness result is provided, demonstrating that the pseudopolynomial-time solvability is the best possible under the assumption P <span>\\\\(\\\\ne \\\\)</span> NP.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-025-01283-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01283-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Maximizing utilitarian and Egalitarian welfare of fractional hedonic games on tree-like graphs
Fractional hedonic games are coalition formation games where a player’s utility is determined by the average value they assign to the members of their coalition. These games are a variation of graph hedonic games, which are a class of coalition formation games that can be succinctly represented. Due to their applicability in network clustering and their relationship to graph hedonic games, fractional hedonic games have been extensively studied from various perspectives. However, finding welfare-maximizing partitions in fractional hedonic games is a challenging task due to the nonlinearity of utilities. In fact, it has been proven to be NP-hard and can be solved in polynomial time only for a limited number of graph classes, such as trees. This paper presents (pseudo)polynomial-time algorithms to compute welfare-maximizing partitions in fractional hedonic games on tree-like graphs. We consider two types of social welfare measures: utilitarian and egalitarian. Tree-like graphs refer to graphs with bounded treewidth and block graphs. A hardness result is provided, demonstrating that the pseudopolynomial-time solvability is the best possible under the assumption P \(\ne \) NP.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.