利用主动学习的机器学习原子间势加速吸附质分子位置的全局搜索

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Olga Klimanova, Nikita Rybin and Alexander Shapeev
{"title":"利用主动学习的机器学习原子间势加速吸附质分子位置的全局搜索","authors":"Olga Klimanova, Nikita Rybin and Alexander Shapeev","doi":"10.1039/D5CP00532A","DOIUrl":null,"url":null,"abstract":"<p >We present an algorithm for accelerating the search of a molecule's adsorption sites based on global optimization of surface adsorbate geometries. Our approach uses a machine-learning interatomic potential (moment tensor potential) to approximate the potential energy surface and an active learning algorithm for the automatic construction of an optimal training dataset. To validate our methodology, we compare the results across various well-known catalytic systems with surfaces of different crystallographic orientations and adsorbate geometries, including CO/Pd(111), NO/Pd(100), NH<small><sub>3</sub></small>/Cu(100), C<small><sub>6</sub></small>H<small><sub>6</sub></small>/Ag(111), and CH<small><sub>2</sub></small>CO/Rh(211). In all the cases, we observed an agreement of our results with the literature.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 17","pages":" 9201-9210"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating the global search of adsorbate molecule positions using machine-learning interatomic potentials with active learning\",\"authors\":\"Olga Klimanova, Nikita Rybin and Alexander Shapeev\",\"doi\":\"10.1039/D5CP00532A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We present an algorithm for accelerating the search of a molecule's adsorption sites based on global optimization of surface adsorbate geometries. Our approach uses a machine-learning interatomic potential (moment tensor potential) to approximate the potential energy surface and an active learning algorithm for the automatic construction of an optimal training dataset. To validate our methodology, we compare the results across various well-known catalytic systems with surfaces of different crystallographic orientations and adsorbate geometries, including CO/Pd(111), NO/Pd(100), NH<small><sub>3</sub></small>/Cu(100), C<small><sub>6</sub></small>H<small><sub>6</sub></small>/Ag(111), and CH<small><sub>2</sub></small>CO/Rh(211). In all the cases, we observed an agreement of our results with the literature.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 17\",\"pages\":\" 9201-9210\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00532a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00532a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于表面吸附物几何结构全局优化的加速分子吸附位点搜索算法。我们的方法使用机器学习原子间势(矩张量势)来近似势能面,并使用主动学习算法来自动构建最优训练数据集。为了验证我们的方法,我们比较了各种已知的催化体系的结果,这些体系具有不同的晶体取向和吸附物几何形状,包括CO/Pd(111), NO/Pd(100), NH3/Cu(100), C6H6/Ag(111)和CH2CO/Rh(211)。在所有病例中,我们观察到我们的结果与文献一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accelerating the global search of adsorbate molecule positions using machine-learning interatomic potentials with active learning

Accelerating the global search of adsorbate molecule positions using machine-learning interatomic potentials with active learning

We present an algorithm for accelerating the search of a molecule's adsorption sites based on global optimization of surface adsorbate geometries. Our approach uses a machine-learning interatomic potential (moment tensor potential) to approximate the potential energy surface and an active learning algorithm for the automatic construction of an optimal training dataset. To validate our methodology, we compare the results across various well-known catalytic systems with surfaces of different crystallographic orientations and adsorbate geometries, including CO/Pd(111), NO/Pd(100), NH3/Cu(100), C6H6/Ag(111), and CH2CO/Rh(211). In all the cases, we observed an agreement of our results with the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信