稀疏Gabor变换及其在地震数据分析中的应用

IF 7.5 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Siyuan Chen;Ning Wang;Ying Shi;Mengxin Guo;Wei Shi;Siyuan Cao;Ziqi Jin
{"title":"稀疏Gabor变换及其在地震数据分析中的应用","authors":"Siyuan Chen;Ning Wang;Ying Shi;Mengxin Guo;Wei Shi;Siyuan Cao;Ziqi Jin","doi":"10.1109/TGRS.2025.3560299","DOIUrl":null,"url":null,"abstract":"Considering the limitation of the Gabor transform (GT) due to the uncertainty principle, where time and frequency resolution cannot both be maximized simultaneously, we propose a postprocessing strategy for the time-frequency spectrum (TFS) to mitigate this limitation and improve time-frequency concentration. In the frequency band of seismic data, the time and frequency window sizes of the GT are fixed, implying that the GT’s TFS is formed by the 2-D convolution of a high-resolution TFS with a Gaussian-shaped point spread function (PSF). Therefore, based on compressed sensing theory, we use sparse constraints to the TFS and solve the 2-D deconvolution of the GT’s TFS using the alternating direction method of multipliers algorithm to eliminate the influence of the time-frequency window function. The PSF used for deconvolution is determined by the variances of the time and frequency windows, and by altering the size of the PSF, we can obtain frequency-sparse GT (FSGT) and time-sparse GT (TSGT). Simulation signals demonstrate the effectiveness of this postprocessing strategy. For actual data, we prove that the sparse Gabor transform can enhance time-frequency concentration and improve the accuracy of seismic data analysis by integrating thin layer identification and frequency-dependent amplitude variation with offset attributes.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-10"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Gabor Transform and Its Application in Seismic Data Analysis\",\"authors\":\"Siyuan Chen;Ning Wang;Ying Shi;Mengxin Guo;Wei Shi;Siyuan Cao;Ziqi Jin\",\"doi\":\"10.1109/TGRS.2025.3560299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the limitation of the Gabor transform (GT) due to the uncertainty principle, where time and frequency resolution cannot both be maximized simultaneously, we propose a postprocessing strategy for the time-frequency spectrum (TFS) to mitigate this limitation and improve time-frequency concentration. In the frequency band of seismic data, the time and frequency window sizes of the GT are fixed, implying that the GT’s TFS is formed by the 2-D convolution of a high-resolution TFS with a Gaussian-shaped point spread function (PSF). Therefore, based on compressed sensing theory, we use sparse constraints to the TFS and solve the 2-D deconvolution of the GT’s TFS using the alternating direction method of multipliers algorithm to eliminate the influence of the time-frequency window function. The PSF used for deconvolution is determined by the variances of the time and frequency windows, and by altering the size of the PSF, we can obtain frequency-sparse GT (FSGT) and time-sparse GT (TSGT). Simulation signals demonstrate the effectiveness of this postprocessing strategy. For actual data, we prove that the sparse Gabor transform can enhance time-frequency concentration and improve the accuracy of seismic data analysis by integrating thin layer identification and frequency-dependent amplitude variation with offset attributes.\",\"PeriodicalId\":13213,\"journal\":{\"name\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"volume\":\"63 \",\"pages\":\"1-10\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10964410/\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10964410/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

考虑到Gabor变换(GT)由于不确定性原理导致的时间和频率分辨率不能同时最大化的限制,我们提出了一种时频谱(TFS)的后处理策略来缓解这一限制并提高时频集中。在地震数据频带内,GT的时间和频率窗大小是固定的,这意味着GT的TFS是由高分辨率TFS与高斯形点扩展函数(PSF)的二维卷积形成的。因此,基于压缩感知理论,我们对TFS使用稀疏约束,并使用乘法器算法的交替方向方法对GT的TFS进行二维反卷积,以消除时频窗函数的影响。用于反卷积的PSF由时间窗和频率窗的方差决定,通过改变PSF的大小,我们可以得到频率稀疏GT (FSGT)和时间稀疏GT (TSGT)。仿真信号验证了该后处理策略的有效性。对于实际数据,我们证明了稀疏Gabor变换通过将薄层识别和频率相关振幅变化与偏移属性相结合,可以增强地震数据的时频集中,提高地震数据分析的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Gabor Transform and Its Application in Seismic Data Analysis
Considering the limitation of the Gabor transform (GT) due to the uncertainty principle, where time and frequency resolution cannot both be maximized simultaneously, we propose a postprocessing strategy for the time-frequency spectrum (TFS) to mitigate this limitation and improve time-frequency concentration. In the frequency band of seismic data, the time and frequency window sizes of the GT are fixed, implying that the GT’s TFS is formed by the 2-D convolution of a high-resolution TFS with a Gaussian-shaped point spread function (PSF). Therefore, based on compressed sensing theory, we use sparse constraints to the TFS and solve the 2-D deconvolution of the GT’s TFS using the alternating direction method of multipliers algorithm to eliminate the influence of the time-frequency window function. The PSF used for deconvolution is determined by the variances of the time and frequency windows, and by altering the size of the PSF, we can obtain frequency-sparse GT (FSGT) and time-sparse GT (TSGT). Simulation signals demonstrate the effectiveness of this postprocessing strategy. For actual data, we prove that the sparse Gabor transform can enhance time-frequency concentration and improve the accuracy of seismic data analysis by integrating thin layer identification and frequency-dependent amplitude variation with offset attributes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信