层析成像中从投影到区域计数的不确定性传播:在放射性药物剂量学中的应用

Lucas Polson;Sara Kurkowska;Chenguang Li;Pedro Esquinas;Peyman Sheikhzadeh;Mehrshad Abbasi;Francois Benard;Carlos Uribe;Arman Rahmim
{"title":"层析成像中从投影到区域计数的不确定性传播:在放射性药物剂量学中的应用","authors":"Lucas Polson;Sara Kurkowska;Chenguang Li;Pedro Esquinas;Peyman Sheikhzadeh;Mehrshad Abbasi;Francois Benard;Carlos Uribe;Arman Rahmim","doi":"10.1109/TMI.2025.3560330","DOIUrl":null,"url":null,"abstract":"Radiopharmaceutical therapies (RPTs) pre- sent a major opportunity to improve cancer therapy. Although many current RPTs use the same injected activity for all patients, there is interest in using absorbed dose measurements to enable personalized prescriptions. However, image-based absorbed dose calculations incur uncertainties from calibration factors, partial volume effects and segmentation methods. While previously published dose estimation protocols incorporate these uncertainties, they do not account for uncertainty that originates from Poisson noise in the projection data that gets propagated through reconstruction algorithms. This effect should be accounted for to adequately estimate the total uncertainty in absorbed dose estimates. This paper proposes a computationally practical algorithm that propagates uncertainty from projection data through clinical reconstruction algorithms to obtain uncertainties on the total activity within volumes of interest (VOIs). The algorithm is first validated on <inline-formula> <tex-math>${}^{{177}}$ </tex-math></inline-formula>Lu and <inline-formula> <tex-math>${}^{{225}}$ </tex-math></inline-formula>Ac phantom data by comparing estimated uncertainties from individual SPECT acquisitions to empirical estimates obtained from multiple acquisitions. It is then applied to (i) Monte Carlo and (ii) multi-time point <inline-formula> <tex-math>${}^{{177}}$ </tex-math></inline-formula>Lu-DOTATATE and <inline-formula> <tex-math>${}^{{225}}$ </tex-math></inline-formula>Ac-PSMA-617 patient data for time integrated activity (TIA) uncertainty estimation. The outcomes of this work are two-fold: (i) the proposed uncertainty estimation algorithm is validated, and (ii) the propagation of VOI uncertainties to TIA uncertainty is validated with Monte Carlo data and applied to patient data. The proposed algorithm is made publicly available in the open-source image reconstruction library PyTomography and in the SPECT reconstruction extension of 3D Slicer.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 8","pages":"3233-3244"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty Propagation From Projections to Region Counts in Tomographic Imaging: Application to Radiopharmaceutical Dosimetry\",\"authors\":\"Lucas Polson;Sara Kurkowska;Chenguang Li;Pedro Esquinas;Peyman Sheikhzadeh;Mehrshad Abbasi;Francois Benard;Carlos Uribe;Arman Rahmim\",\"doi\":\"10.1109/TMI.2025.3560330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radiopharmaceutical therapies (RPTs) pre- sent a major opportunity to improve cancer therapy. Although many current RPTs use the same injected activity for all patients, there is interest in using absorbed dose measurements to enable personalized prescriptions. However, image-based absorbed dose calculations incur uncertainties from calibration factors, partial volume effects and segmentation methods. While previously published dose estimation protocols incorporate these uncertainties, they do not account for uncertainty that originates from Poisson noise in the projection data that gets propagated through reconstruction algorithms. This effect should be accounted for to adequately estimate the total uncertainty in absorbed dose estimates. This paper proposes a computationally practical algorithm that propagates uncertainty from projection data through clinical reconstruction algorithms to obtain uncertainties on the total activity within volumes of interest (VOIs). The algorithm is first validated on <inline-formula> <tex-math>${}^{{177}}$ </tex-math></inline-formula>Lu and <inline-formula> <tex-math>${}^{{225}}$ </tex-math></inline-formula>Ac phantom data by comparing estimated uncertainties from individual SPECT acquisitions to empirical estimates obtained from multiple acquisitions. It is then applied to (i) Monte Carlo and (ii) multi-time point <inline-formula> <tex-math>${}^{{177}}$ </tex-math></inline-formula>Lu-DOTATATE and <inline-formula> <tex-math>${}^{{225}}$ </tex-math></inline-formula>Ac-PSMA-617 patient data for time integrated activity (TIA) uncertainty estimation. The outcomes of this work are two-fold: (i) the proposed uncertainty estimation algorithm is validated, and (ii) the propagation of VOI uncertainties to TIA uncertainty is validated with Monte Carlo data and applied to patient data. The proposed algorithm is made publicly available in the open-source image reconstruction library PyTomography and in the SPECT reconstruction extension of 3D Slicer.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 8\",\"pages\":\"3233-3244\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10964321/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10964321/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

放射药物治疗(RPTs)为改善癌症治疗提供了一个重要的机会。尽管目前许多RPTs对所有患者使用相同的注射活性,但人们对使用吸收剂量测量来实现个性化处方很感兴趣。然而,基于图像的吸收剂量计算会受到校准因素、部分体积效应和分割方法的不确定性。虽然先前公布的剂量估计方案包含了这些不确定性,但它们没有考虑到通过重建算法传播的投影数据中的泊松噪声所产生的不确定性。为了充分估计吸收剂量估计中的总不确定度,应考虑这一影响。本文提出了一种计算实用的算法,通过临床重建算法传播投影数据的不确定性,以获得感兴趣体积(VOIs)内总活动的不确定性。首先在${}^{{177}}$ Lu和${}^{225}}$ Ac幻影数据上验证该算法,将单个SPECT获取的估计不确定性与从多个获取的经验估计进行比较。然后将其应用于(i)蒙特卡罗和(ii)多时间点${}^{{177}}$ Lu-DOTATATE和${}^{{225}}$ Ac-PSMA-617患者数据,用于时间集成活动(TIA)不确定性估计。这项工作的结果是双重的:(i)所提出的不确定性估计算法得到验证,(ii)用蒙特卡罗数据验证了VOI不确定性到TIA不确定性的传播,并应用于患者数据。该算法已在开源图像重建库PyTomography和3D Slicer的SPECT重建扩展中公开提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty Propagation From Projections to Region Counts in Tomographic Imaging: Application to Radiopharmaceutical Dosimetry
Radiopharmaceutical therapies (RPTs) pre- sent a major opportunity to improve cancer therapy. Although many current RPTs use the same injected activity for all patients, there is interest in using absorbed dose measurements to enable personalized prescriptions. However, image-based absorbed dose calculations incur uncertainties from calibration factors, partial volume effects and segmentation methods. While previously published dose estimation protocols incorporate these uncertainties, they do not account for uncertainty that originates from Poisson noise in the projection data that gets propagated through reconstruction algorithms. This effect should be accounted for to adequately estimate the total uncertainty in absorbed dose estimates. This paper proposes a computationally practical algorithm that propagates uncertainty from projection data through clinical reconstruction algorithms to obtain uncertainties on the total activity within volumes of interest (VOIs). The algorithm is first validated on ${}^{{177}}$ Lu and ${}^{{225}}$ Ac phantom data by comparing estimated uncertainties from individual SPECT acquisitions to empirical estimates obtained from multiple acquisitions. It is then applied to (i) Monte Carlo and (ii) multi-time point ${}^{{177}}$ Lu-DOTATATE and ${}^{{225}}$ Ac-PSMA-617 patient data for time integrated activity (TIA) uncertainty estimation. The outcomes of this work are two-fold: (i) the proposed uncertainty estimation algorithm is validated, and (ii) the propagation of VOI uncertainties to TIA uncertainty is validated with Monte Carlo data and applied to patient data. The proposed algorithm is made publicly available in the open-source image reconstruction library PyTomography and in the SPECT reconstruction extension of 3D Slicer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信