U-Net及其变体在医学图像分割中的研究进展及应用综述

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wang Jiangtao, Nur Intan Raihana Ruhaiyem, Fu Panpan
{"title":"U-Net及其变体在医学图像分割中的研究进展及应用综述","authors":"Wang Jiangtao,&nbsp;Nur Intan Raihana Ruhaiyem,&nbsp;Fu Panpan","doi":"10.1049/ipr2.70019","DOIUrl":null,"url":null,"abstract":"<p>Medical images often exhibit low and blurred contrast between lesions and surrounding tissues, with considerable variation in lesion edges and shapes even within the same disease, leading to significant challenges in segmentation. Therefore, precise segmentation of lesions has become an essential prerequisite for patient condition assessment and formulation of treatment plans. Significant achievements have been made in research related to the U-Net model in recent years. It improves segmentation performance and is extensively applied in the semantic segmentation of medical images to offer technical support for consistent quantitative lesion analysis methods. First, this paper classifies medical image datasets on the basis of their imaging modalities and then examines U-Net and its various improvement models from the perspective of structural modifications. The research objectives, innovative designs, and limitations of each approach are discussed in detail. Second, we summarise the four central improvement mechanisms of the U-Net and U-Net variant algorithms: the jump-connection mechanism, the residual-connection mechanism, 3D-UNet, and the transformer mechanism. Finally, we examine the relationships among the four core enhancement mechanisms and commonly utilized medical datasets and propose potential avenues and strategies for future advancements. This paper provides a systematic summary and reference for researchers in related fields, and we look forward to designing more efficient and stable medical image segmentation network models based on the U-Net network.</p>","PeriodicalId":56303,"journal":{"name":"IET Image Processing","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70019","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Review of U-Net and Its Variants: Advances and Applications in Medical Image Segmentation\",\"authors\":\"Wang Jiangtao,&nbsp;Nur Intan Raihana Ruhaiyem,&nbsp;Fu Panpan\",\"doi\":\"10.1049/ipr2.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Medical images often exhibit low and blurred contrast between lesions and surrounding tissues, with considerable variation in lesion edges and shapes even within the same disease, leading to significant challenges in segmentation. Therefore, precise segmentation of lesions has become an essential prerequisite for patient condition assessment and formulation of treatment plans. Significant achievements have been made in research related to the U-Net model in recent years. It improves segmentation performance and is extensively applied in the semantic segmentation of medical images to offer technical support for consistent quantitative lesion analysis methods. First, this paper classifies medical image datasets on the basis of their imaging modalities and then examines U-Net and its various improvement models from the perspective of structural modifications. The research objectives, innovative designs, and limitations of each approach are discussed in detail. Second, we summarise the four central improvement mechanisms of the U-Net and U-Net variant algorithms: the jump-connection mechanism, the residual-connection mechanism, 3D-UNet, and the transformer mechanism. Finally, we examine the relationships among the four core enhancement mechanisms and commonly utilized medical datasets and propose potential avenues and strategies for future advancements. This paper provides a systematic summary and reference for researchers in related fields, and we look forward to designing more efficient and stable medical image segmentation network models based on the U-Net network.</p>\",\"PeriodicalId\":56303,\"journal\":{\"name\":\"IET Image Processing\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70019\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ipr2.70019\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ipr2.70019","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

医学图像在病变和周围组织之间往往表现出较低和模糊的对比度,即使在同一疾病中,病变边缘和形状也有相当大的差异,这给分割带来了重大挑战。因此,病灶的精确分割已成为评估患者病情和制定治疗方案的必要前提。近年来,有关U-Net模型的研究取得了重大成果。它提高了分割性能,广泛应用于医学图像的语义分割,为一致的定量病灶分析方法提供技术支持。本文首先根据医学图像数据集的成像方式对其进行分类,然后从结构修改的角度考察U-Net及其各种改进模型。详细讨论了每种方法的研究目标、创新设计和局限性。其次,我们总结了U-Net和U-Net变体算法的四种主要改进机制:跳跃连接机制、剩余连接机制、3D-UNet和变压器机制。最后,我们研究了四种核心增强机制和常用医疗数据集之间的关系,并提出了未来发展的潜在途径和策略。本文为相关领域的研究人员提供了系统的总结和参考,并期待基于U-Net网络设计出更高效、稳定的医学图像分割网络模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Comprehensive Review of U-Net and Its Variants: Advances and Applications in Medical Image Segmentation

A Comprehensive Review of U-Net and Its Variants: Advances and Applications in Medical Image Segmentation

Medical images often exhibit low and blurred contrast between lesions and surrounding tissues, with considerable variation in lesion edges and shapes even within the same disease, leading to significant challenges in segmentation. Therefore, precise segmentation of lesions has become an essential prerequisite for patient condition assessment and formulation of treatment plans. Significant achievements have been made in research related to the U-Net model in recent years. It improves segmentation performance and is extensively applied in the semantic segmentation of medical images to offer technical support for consistent quantitative lesion analysis methods. First, this paper classifies medical image datasets on the basis of their imaging modalities and then examines U-Net and its various improvement models from the perspective of structural modifications. The research objectives, innovative designs, and limitations of each approach are discussed in detail. Second, we summarise the four central improvement mechanisms of the U-Net and U-Net variant algorithms: the jump-connection mechanism, the residual-connection mechanism, 3D-UNet, and the transformer mechanism. Finally, we examine the relationships among the four core enhancement mechanisms and commonly utilized medical datasets and propose potential avenues and strategies for future advancements. This paper provides a systematic summary and reference for researchers in related fields, and we look forward to designing more efficient and stable medical image segmentation network models based on the U-Net network.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Image Processing
IET Image Processing 工程技术-工程:电子与电气
CiteScore
5.40
自引率
8.70%
发文量
282
审稿时长
6 months
期刊介绍: The IET Image Processing journal encompasses research areas related to the generation, processing and communication of visual information. The focus of the journal is the coverage of the latest research results in image and video processing, including image generation and display, enhancement and restoration, segmentation, colour and texture analysis, coding and communication, implementations and architectures as well as innovative applications. Principal topics include: Generation and Display - Imaging sensors and acquisition systems, illumination, sampling and scanning, quantization, colour reproduction, image rendering, display and printing systems, evaluation of image quality. Processing and Analysis - Image enhancement, restoration, segmentation, registration, multispectral, colour and texture processing, multiresolution processing and wavelets, morphological operations, stereoscopic and 3-D processing, motion detection and estimation, video and image sequence processing. Implementations and Architectures - Image and video processing hardware and software, design and construction, architectures and software, neural, adaptive, and fuzzy processing. Coding and Transmission - Image and video compression and coding, compression standards, noise modelling, visual information networks, streamed video. Retrieval and Multimedia - Storage of images and video, database design, image retrieval, video annotation and editing, mixed media incorporating visual information, multimedia systems and applications, image and video watermarking, steganography. Applications - Innovative application of image and video processing technologies to any field, including life sciences, earth sciences, astronomy, document processing and security. Current Special Issue Call for Papers: Evolutionary Computation for Image Processing - https://digital-library.theiet.org/files/IET_IPR_CFP_EC.pdf AI-Powered 3D Vision - https://digital-library.theiet.org/files/IET_IPR_CFP_AIPV.pdf Multidisciplinary advancement of Imaging Technologies: From Medical Diagnostics and Genomics to Cognitive Machine Vision, and Artificial Intelligence - https://digital-library.theiet.org/files/IET_IPR_CFP_IST.pdf Deep Learning for 3D Reconstruction - https://digital-library.theiet.org/files/IET_IPR_CFP_DLR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信