Yan Zhu, Oleg Gaidai, Shicheng He, Jinlu Sheng, Ahmed Alaghbari, Antoine Dembadouno, Tanyaradzwa Kuzvidza
{"title":"集装箱船舶多失效模式的最新极限超曲面方法","authors":"Yan Zhu, Oleg Gaidai, Shicheng He, Jinlu Sheng, Ahmed Alaghbari, Antoine Dembadouno, Tanyaradzwa Kuzvidza","doi":"10.1049/itr2.70029","DOIUrl":null,"url":null,"abstract":"<p>This case study presents state-of-the-art, multimodal structural reliability and risk evaluation methodology, particularly suitable for naval architecture, transportation and marine engineering applications.</p><p>Existing reliability methods do not easily tackle systems with a number of critical components higher than 2, while the advocated multimodal reliability and risk evaluation methodology has no limitations on the system's number of dimensions, parts or components. The 4400 TEU container vessel's onboard measured deck panel stresses raw data, collected during numerous vessel's trans-Atlantic crossings, was analysed. Risk of ship hull and panel structural damage caused by excessive whipping (slamming and springing) wave loads, representing types of highly nonlinear wave-induced vibrations, are among primary safety concerns for the contemporary marine transportation industry. It is often challenging to accurately forecast excessive vessel's deck panel hot-spot stresses, possessing complex nonlinear, nonstationary properties. The proposed multimodal hypersurface reliability method fully accounts for a large number of structural components, as well as dynamic nonlinearities. Lab testing may often be disputed, as obtained measurements will depend on biased incident wave properties and model scales. As a result, the onboard dataset, obtained from a particular cargo ship, operating in the North Atlantic provides especially valuable insights into an overall dynamic vessel hull system's durability and reliability.</p><p>This investigation aimed at providing generic state-of-the-art reliability methodology, enabling accurate extraction of pertinent information about vessel hull system's dynamics, e.g., deck panel hot-spot stresses, derived from the onboard sensor-recorded time histories. Utilising proposed hypersurface reliability methodology, structural failure, hazard or damage risks may be effectively yet accurately forecasted, based on spatially distributed vessel deck panel stresses. The presented multimodal state-of-the-art reliability methodology may be particularly suitable for the evaluation of structural hazards of large dynamic systems, having virtually unlimited numbers of principal/key components. The presented study made use of the full scale onboard measured dataset, kindly provided by Det Norske Veritas, Oslo, Norway (DNV), which is commercially valuable on its own.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70029","citationCount":"0","resultStr":"{\"title\":\"Multimodal Gaidai State-of-the-Art Limit Hypersurface Methodology for Container Vessels With Multiple Failure Modes\",\"authors\":\"Yan Zhu, Oleg Gaidai, Shicheng He, Jinlu Sheng, Ahmed Alaghbari, Antoine Dembadouno, Tanyaradzwa Kuzvidza\",\"doi\":\"10.1049/itr2.70029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This case study presents state-of-the-art, multimodal structural reliability and risk evaluation methodology, particularly suitable for naval architecture, transportation and marine engineering applications.</p><p>Existing reliability methods do not easily tackle systems with a number of critical components higher than 2, while the advocated multimodal reliability and risk evaluation methodology has no limitations on the system's number of dimensions, parts or components. The 4400 TEU container vessel's onboard measured deck panel stresses raw data, collected during numerous vessel's trans-Atlantic crossings, was analysed. Risk of ship hull and panel structural damage caused by excessive whipping (slamming and springing) wave loads, representing types of highly nonlinear wave-induced vibrations, are among primary safety concerns for the contemporary marine transportation industry. It is often challenging to accurately forecast excessive vessel's deck panel hot-spot stresses, possessing complex nonlinear, nonstationary properties. The proposed multimodal hypersurface reliability method fully accounts for a large number of structural components, as well as dynamic nonlinearities. Lab testing may often be disputed, as obtained measurements will depend on biased incident wave properties and model scales. As a result, the onboard dataset, obtained from a particular cargo ship, operating in the North Atlantic provides especially valuable insights into an overall dynamic vessel hull system's durability and reliability.</p><p>This investigation aimed at providing generic state-of-the-art reliability methodology, enabling accurate extraction of pertinent information about vessel hull system's dynamics, e.g., deck panel hot-spot stresses, derived from the onboard sensor-recorded time histories. Utilising proposed hypersurface reliability methodology, structural failure, hazard or damage risks may be effectively yet accurately forecasted, based on spatially distributed vessel deck panel stresses. The presented multimodal state-of-the-art reliability methodology may be particularly suitable for the evaluation of structural hazards of large dynamic systems, having virtually unlimited numbers of principal/key components. The presented study made use of the full scale onboard measured dataset, kindly provided by Det Norske Veritas, Oslo, Norway (DNV), which is commercially valuable on its own.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70029\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.70029\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.70029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本案例研究介绍了最先进的多模态结构可靠性和风险评估方法,尤其适用于海军建筑、运输和海洋工程应用。现有的可靠性方法难以解决关键部件数量超过 2 个的系统,而提倡的多模态可靠性和风险评估方法对系统的尺寸、部件或组件数量没有限制。我们分析了 4400 TEU 集装箱船的船上测量甲板板应力原始数据,这些数据是在该船多次横跨大西洋时收集的。波浪载荷是一种高度非线性的波浪诱导振动,过大的鞭打(猛击和弹跳)波浪载荷造成船体和面板结构损坏的风险是当代海洋运输业的主要安全问题之一。由于船舶甲板板热点应力具有复杂的非线性和非稳态特性,因此要准确预报船舶甲板板热点应力过大的情况往往具有挑战性。所提出的多模态超表面可靠性方法充分考虑了大量结构部件以及动态非线性因素。实验室测试往往会引起争议,因为所获得的测量结果取决于有偏差的入射波特性和模型尺度。因此,从一艘在北大西洋航行的货船上获得的船上数据集,对整体动态船体系统的耐久性和可靠性提供了特别有价值的见解。这项研究旨在提供通用的、最先进的可靠性方法,以便从船上传感器记录的时间历程中准确提取船体系统动态的相关信息,例如甲板板热点应力。利用所提出的超表面可靠性方法,可以根据空间分布的船体甲板应力,有效而准确地预测结构故障、危险或损坏风险。所提出的多模态先进可靠性方法尤其适用于评估大型动态系统的结构危险,因为该系统的主成分/关键成分数量几乎不受限制。本研究利用了挪威奥斯陆挪威船级社(DNV)提供的全尺寸船上测量数据集,该数据集本身就具有商业价值。
Multimodal Gaidai State-of-the-Art Limit Hypersurface Methodology for Container Vessels With Multiple Failure Modes
This case study presents state-of-the-art, multimodal structural reliability and risk evaluation methodology, particularly suitable for naval architecture, transportation and marine engineering applications.
Existing reliability methods do not easily tackle systems with a number of critical components higher than 2, while the advocated multimodal reliability and risk evaluation methodology has no limitations on the system's number of dimensions, parts or components. The 4400 TEU container vessel's onboard measured deck panel stresses raw data, collected during numerous vessel's trans-Atlantic crossings, was analysed. Risk of ship hull and panel structural damage caused by excessive whipping (slamming and springing) wave loads, representing types of highly nonlinear wave-induced vibrations, are among primary safety concerns for the contemporary marine transportation industry. It is often challenging to accurately forecast excessive vessel's deck panel hot-spot stresses, possessing complex nonlinear, nonstationary properties. The proposed multimodal hypersurface reliability method fully accounts for a large number of structural components, as well as dynamic nonlinearities. Lab testing may often be disputed, as obtained measurements will depend on biased incident wave properties and model scales. As a result, the onboard dataset, obtained from a particular cargo ship, operating in the North Atlantic provides especially valuable insights into an overall dynamic vessel hull system's durability and reliability.
This investigation aimed at providing generic state-of-the-art reliability methodology, enabling accurate extraction of pertinent information about vessel hull system's dynamics, e.g., deck panel hot-spot stresses, derived from the onboard sensor-recorded time histories. Utilising proposed hypersurface reliability methodology, structural failure, hazard or damage risks may be effectively yet accurately forecasted, based on spatially distributed vessel deck panel stresses. The presented multimodal state-of-the-art reliability methodology may be particularly suitable for the evaluation of structural hazards of large dynamic systems, having virtually unlimited numbers of principal/key components. The presented study made use of the full scale onboard measured dataset, kindly provided by Det Norske Veritas, Oslo, Norway (DNV), which is commercially valuable on its own.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf