来自 Akkermansia muciniphila 的 Amuc_1434 通过抑制结直肠癌中的 PD-L1 增强了 CD8+ T 细胞介导的抗肿瘤免疫力

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jiahao Zhu, Shaolei Qin, Ruike Gu, Shengjun Ji, Gang Wu, Ke Gu
{"title":"来自 Akkermansia muciniphila 的 Amuc_1434 通过抑制结直肠癌中的 PD-L1 增强了 CD8+ T 细胞介导的抗肿瘤免疫力","authors":"Jiahao Zhu,&nbsp;Shaolei Qin,&nbsp;Ruike Gu,&nbsp;Shengjun Ji,&nbsp;Gang Wu,&nbsp;Ke Gu","doi":"10.1096/fj.202403295RR","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Colorectal cancer (CRC) shows a limited response to programmed death-ligand 1 (PD-L1) immunotherapies. <i>Akkermansia muciniphila</i> (AKK) may enhance tumor immunity. This study examines how its Outer Membrane Vesicles (OMVs) and Amuc_1434 influence PD-L1 expression and CD8+ T cell activity in CRC. OMVs were isolated and their characteristics were examined through transmission electron microscopy and Western blotting. PD-L1 expression was quantified via Western blot, while CD8+ T cell proliferation was measured using flow cytometry. Cytokine production (interferon-gamma (IFN-γ) and interleukin-2 (IL-2)) was evaluated using ELISA. A CRC mouse model was employed to examine its impact on tumor growth and immune cell infiltration. In CRC cells, treatment with AKK-derived OMVs (AKK-OMVs) significantly downregulated PD-L1 expression (<i>p</i> &lt; 0.05) and markedly increased CD8+ T cell proliferation and the levels of IFN-γ and IL-2 (<i>p</i> &lt; 0.01). Amuc_1434 was identified as the key protein mediating these effects. In vivo, AKK-OMVs treatment substantially reduced tumor volume (<i>p</i> &lt; 0.01) and significantly enhanced CD8+ T cell infiltration into the tumor microenvironment (<i>p</i> &lt; 0.01). Additionally, AKK-OMVs-treated mice showed increased expression of immune activation markers within the tumor tissue, further indicating enhanced antitumor immunity. This study reveals that AKK-OMVs, particularly those containing Amuc_1434, can modulate PD-L1 expression and potentiate CD8+ T cell-mediated antitumor immunity in CRC. These findings suggest a novel approach to overcoming resistance to immune checkpoint inhibitors in CRC.</p>\n </div>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amuc_1434 From Akkermansia muciniphila Enhances CD8+ T Cell-Mediated Anti-Tumor Immunity by Suppressing PD-L1 in Colorectal Cancer\",\"authors\":\"Jiahao Zhu,&nbsp;Shaolei Qin,&nbsp;Ruike Gu,&nbsp;Shengjun Ji,&nbsp;Gang Wu,&nbsp;Ke Gu\",\"doi\":\"10.1096/fj.202403295RR\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Colorectal cancer (CRC) shows a limited response to programmed death-ligand 1 (PD-L1) immunotherapies. <i>Akkermansia muciniphila</i> (AKK) may enhance tumor immunity. This study examines how its Outer Membrane Vesicles (OMVs) and Amuc_1434 influence PD-L1 expression and CD8+ T cell activity in CRC. OMVs were isolated and their characteristics were examined through transmission electron microscopy and Western blotting. PD-L1 expression was quantified via Western blot, while CD8+ T cell proliferation was measured using flow cytometry. Cytokine production (interferon-gamma (IFN-γ) and interleukin-2 (IL-2)) was evaluated using ELISA. A CRC mouse model was employed to examine its impact on tumor growth and immune cell infiltration. In CRC cells, treatment with AKK-derived OMVs (AKK-OMVs) significantly downregulated PD-L1 expression (<i>p</i> &lt; 0.05) and markedly increased CD8+ T cell proliferation and the levels of IFN-γ and IL-2 (<i>p</i> &lt; 0.01). Amuc_1434 was identified as the key protein mediating these effects. In vivo, AKK-OMVs treatment substantially reduced tumor volume (<i>p</i> &lt; 0.01) and significantly enhanced CD8+ T cell infiltration into the tumor microenvironment (<i>p</i> &lt; 0.01). Additionally, AKK-OMVs-treated mice showed increased expression of immune activation markers within the tumor tissue, further indicating enhanced antitumor immunity. This study reveals that AKK-OMVs, particularly those containing Amuc_1434, can modulate PD-L1 expression and potentiate CD8+ T cell-mediated antitumor immunity in CRC. These findings suggest a novel approach to overcoming resistance to immune checkpoint inhibitors in CRC.</p>\\n </div>\",\"PeriodicalId\":50455,\"journal\":{\"name\":\"The FASEB Journal\",\"volume\":\"39 8\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FASEB Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fj.202403295RR\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202403295RR","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Amuc_1434 From Akkermansia muciniphila Enhances CD8+ T Cell-Mediated Anti-Tumor Immunity by Suppressing PD-L1 in Colorectal Cancer

Amuc_1434 From Akkermansia muciniphila Enhances CD8+ T Cell-Mediated Anti-Tumor Immunity by Suppressing PD-L1 in Colorectal Cancer

Colorectal cancer (CRC) shows a limited response to programmed death-ligand 1 (PD-L1) immunotherapies. Akkermansia muciniphila (AKK) may enhance tumor immunity. This study examines how its Outer Membrane Vesicles (OMVs) and Amuc_1434 influence PD-L1 expression and CD8+ T cell activity in CRC. OMVs were isolated and their characteristics were examined through transmission electron microscopy and Western blotting. PD-L1 expression was quantified via Western blot, while CD8+ T cell proliferation was measured using flow cytometry. Cytokine production (interferon-gamma (IFN-γ) and interleukin-2 (IL-2)) was evaluated using ELISA. A CRC mouse model was employed to examine its impact on tumor growth and immune cell infiltration. In CRC cells, treatment with AKK-derived OMVs (AKK-OMVs) significantly downregulated PD-L1 expression (p < 0.05) and markedly increased CD8+ T cell proliferation and the levels of IFN-γ and IL-2 (p < 0.01). Amuc_1434 was identified as the key protein mediating these effects. In vivo, AKK-OMVs treatment substantially reduced tumor volume (p < 0.01) and significantly enhanced CD8+ T cell infiltration into the tumor microenvironment (p < 0.01). Additionally, AKK-OMVs-treated mice showed increased expression of immune activation markers within the tumor tissue, further indicating enhanced antitumor immunity. This study reveals that AKK-OMVs, particularly those containing Amuc_1434, can modulate PD-L1 expression and potentiate CD8+ T cell-mediated antitumor immunity in CRC. These findings suggest a novel approach to overcoming resistance to immune checkpoint inhibitors in CRC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The FASEB Journal
The FASEB Journal 生物-生化与分子生物学
CiteScore
9.20
自引率
2.10%
发文量
6243
审稿时长
3 months
期刊介绍: The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信