difff - cffbnet:用于脑肿瘤分割的弥散嵌入式跨层特征融合桥网络

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiaosheng Wu, Qingyi Hou, Chaosheng Tang, Shuihua Wang, Junding Sun, Yudong Zhang
{"title":"difff - cffbnet:用于脑肿瘤分割的弥散嵌入式跨层特征融合桥网络","authors":"Xiaosheng Wu,&nbsp;Qingyi Hou,&nbsp;Chaosheng Tang,&nbsp;Shuihua Wang,&nbsp;Junding Sun,&nbsp;Yudong Zhang","doi":"10.1002/ima.70088","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study introduces the Diff-CFFBNet, a novel network for brain tumor segmentation designed to address the challenges of misdetection in broken tumor regions within MRI scans, which is crucial for early diagnosis, treatment planning, and disease monitoring. The proposed method incorporates a cross-layer feature fusion bridge (CFFB) to enhance feature interaction and a cross-layer feature fusion U-Net (CFFU-Net) to reduce the semantic gap in diffusion models. Additionally, a sampling-quantity-based fusion (SQ-Fusion) is utilized to leverage the uncertainty of diffusion models for improved segmentation outcomes. Experimental validation on BraTS 2019, BraTS 2020, TCGA-GBM, TCGA-LGG, and MSD datasets demonstrates that Diff-CFFBNet outperforms existing methods, achieving superior performance in terms of Dice score, HD95, and mIoU metrics. These results indicate the model's robustness and precision, even under challenging conditions with complex tumor structures. Diff-CFFBNet provides a reliable solution for accurate and efficient brain tumor segmentation in medical imaging, with the potential for clinical application in treatment planning and disease monitoring. Future work aims to extend this approach to multiple tumor types and refine diffusion model applications in medical image segmentation.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diff-CFFBNet: Diffusion-Embedded Cross-Layer Feature Fusion Bridge Network for Brain Tumor Segmentation\",\"authors\":\"Xiaosheng Wu,&nbsp;Qingyi Hou,&nbsp;Chaosheng Tang,&nbsp;Shuihua Wang,&nbsp;Junding Sun,&nbsp;Yudong Zhang\",\"doi\":\"10.1002/ima.70088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study introduces the Diff-CFFBNet, a novel network for brain tumor segmentation designed to address the challenges of misdetection in broken tumor regions within MRI scans, which is crucial for early diagnosis, treatment planning, and disease monitoring. The proposed method incorporates a cross-layer feature fusion bridge (CFFB) to enhance feature interaction and a cross-layer feature fusion U-Net (CFFU-Net) to reduce the semantic gap in diffusion models. Additionally, a sampling-quantity-based fusion (SQ-Fusion) is utilized to leverage the uncertainty of diffusion models for improved segmentation outcomes. Experimental validation on BraTS 2019, BraTS 2020, TCGA-GBM, TCGA-LGG, and MSD datasets demonstrates that Diff-CFFBNet outperforms existing methods, achieving superior performance in terms of Dice score, HD95, and mIoU metrics. These results indicate the model's robustness and precision, even under challenging conditions with complex tumor structures. Diff-CFFBNet provides a reliable solution for accurate and efficient brain tumor segmentation in medical imaging, with the potential for clinical application in treatment planning and disease monitoring. Future work aims to extend this approach to multiple tumor types and refine diffusion model applications in medical image segmentation.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.70088\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70088","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种新的脑肿瘤分割网络difff - cffbnet,该网络旨在解决MRI扫描中破碎肿瘤区域的误诊挑战,这对早期诊断,治疗计划和疾病监测至关重要。该方法采用跨层特征融合桥(CFFB)来增强特征交互,采用跨层特征融合U-Net (CFFU-Net)来减小扩散模型中的语义差距。此外,基于采样数量的融合(SQ-Fusion)被用来利用扩散模型的不确定性来改善分割结果。在BraTS 2019、BraTS 2020、TCGA-GBM、TCGA-LGG和MSD数据集上的实验验证表明,difff - cffbnet优于现有方法,在Dice得分、HD95和mIoU指标方面取得了优异的性能。这些结果表明,即使在具有复杂肿瘤结构的挑战性条件下,该模型也具有鲁棒性和精度。Diff-CFFBNet为医学影像中准确、高效的脑肿瘤分割提供了可靠的解决方案,在治疗计划和疾病监测方面具有临床应用潜力。未来的工作旨在将该方法扩展到多种肿瘤类型,并改进扩散模型在医学图像分割中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diff-CFFBNet: Diffusion-Embedded Cross-Layer Feature Fusion Bridge Network for Brain Tumor Segmentation

This study introduces the Diff-CFFBNet, a novel network for brain tumor segmentation designed to address the challenges of misdetection in broken tumor regions within MRI scans, which is crucial for early diagnosis, treatment planning, and disease monitoring. The proposed method incorporates a cross-layer feature fusion bridge (CFFB) to enhance feature interaction and a cross-layer feature fusion U-Net (CFFU-Net) to reduce the semantic gap in diffusion models. Additionally, a sampling-quantity-based fusion (SQ-Fusion) is utilized to leverage the uncertainty of diffusion models for improved segmentation outcomes. Experimental validation on BraTS 2019, BraTS 2020, TCGA-GBM, TCGA-LGG, and MSD datasets demonstrates that Diff-CFFBNet outperforms existing methods, achieving superior performance in terms of Dice score, HD95, and mIoU metrics. These results indicate the model's robustness and precision, even under challenging conditions with complex tumor structures. Diff-CFFBNet provides a reliable solution for accurate and efficient brain tumor segmentation in medical imaging, with the potential for clinical application in treatment planning and disease monitoring. Future work aims to extend this approach to multiple tumor types and refine diffusion model applications in medical image segmentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信