基于终端的变压器绕组匝间故障高效定位和严重性评估方法

K. Lakshmi Prasanna , Manoj Samal , Mithun Mondal
{"title":"基于终端的变压器绕组匝间故障高效定位和严重性评估方法","authors":"K. Lakshmi Prasanna ,&nbsp;Manoj Samal ,&nbsp;Mithun Mondal","doi":"10.1016/j.prime.2025.100982","DOIUrl":null,"url":null,"abstract":"<div><div>Early detection of Inter-Turn Fault (ITF) in power transformers is crucial for preventing extensive damage to the windings. However the existing methods based on calculation of fault factors, machine learning methods, and statistical indices require additional terminals or internal tap points, extensive training data and high computational demands, and limited applicability due to non-standardization and specific frequency band selection. To overcome these limitations, this paper presents a novel, non-invasive method for identifying the location and severity of ITFs using only external terminal measurements. Our approach leverages a non-iterative subspace identification algorithm to estimate the pole-zero-gain model from the measured Driving Point Impedance (DPI) frequency response, <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>(s), of a faulty transformer. By solving a matrix equation involving gain, <span><math><mi>K</mi></math></span>, series capacitance (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>), and ground capacitance (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>), we determine the faulty capacitance, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> for each winding section. The fault location is then identified by correlating the measured and estimated DPIs, with the section exhibiting the maximum correlation being deemed the faulty disc and its corresponding <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> is the faulty capacitance. This approach accurately identifies the faulty disc and determines the extent of insulation damage caused by the ITF, as validated through simulation and experimental results on various winding types. It paves the way for a more efficient and reliable diagnostic solution.</div></div>","PeriodicalId":100488,"journal":{"name":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","volume":"12 ","pages":"Article 100982"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terminal-based method for efficient inter-turn fault localization and severity assessment in transformer windings\",\"authors\":\"K. Lakshmi Prasanna ,&nbsp;Manoj Samal ,&nbsp;Mithun Mondal\",\"doi\":\"10.1016/j.prime.2025.100982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Early detection of Inter-Turn Fault (ITF) in power transformers is crucial for preventing extensive damage to the windings. However the existing methods based on calculation of fault factors, machine learning methods, and statistical indices require additional terminals or internal tap points, extensive training data and high computational demands, and limited applicability due to non-standardization and specific frequency band selection. To overcome these limitations, this paper presents a novel, non-invasive method for identifying the location and severity of ITFs using only external terminal measurements. Our approach leverages a non-iterative subspace identification algorithm to estimate the pole-zero-gain model from the measured Driving Point Impedance (DPI) frequency response, <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>(s), of a faulty transformer. By solving a matrix equation involving gain, <span><math><mi>K</mi></math></span>, series capacitance (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>), and ground capacitance (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>), we determine the faulty capacitance, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> for each winding section. The fault location is then identified by correlating the measured and estimated DPIs, with the section exhibiting the maximum correlation being deemed the faulty disc and its corresponding <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> is the faulty capacitance. This approach accurately identifies the faulty disc and determines the extent of insulation damage caused by the ITF, as validated through simulation and experimental results on various winding types. It paves the way for a more efficient and reliable diagnostic solution.</div></div>\",\"PeriodicalId\":100488,\"journal\":{\"name\":\"e-Prime - Advances in Electrical Engineering, Electronics and Energy\",\"volume\":\"12 \",\"pages\":\"Article 100982\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Prime - Advances in Electrical Engineering, Electronics and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772671125000890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772671125000890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电力变压器匝间故障的早期检测是防止绕组大面积损坏的关键。然而,现有的基于故障因素计算、机器学习方法和统计指标的方法需要额外的终端或内部抽点,训练数据量大,计算量大,而且由于非标准化和特定的频段选择,适用性有限。为了克服这些限制,本文提出了一种新的非侵入性方法,仅使用外部终端测量来识别ITFs的位置和严重程度。我们的方法利用非迭代子空间识别算法从故障变压器的测量驱动点阻抗(DPI)频率响应Zf(s)估计极点零增益模型。通过求解涉及增益、K、串联电容(Cs)和接地电容(Cg)的矩阵方程,我们确定了每个绕组部分的故障电容Cf。然后通过将测量的dpi和估计的dpi相关联来识别故障位置,显示最大相关性的部分被认为是故障盘,其相应的Cf是故障电容。该方法可以准确地识别故障盘,并确定由ITF引起的绝缘损坏程度,并通过各种绕组类型的仿真和实验结果进行了验证。它为更有效、更可靠的诊断解决方案铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Terminal-based method for efficient inter-turn fault localization and severity assessment in transformer windings

Terminal-based method for efficient inter-turn fault localization and severity assessment in transformer windings
Early detection of Inter-Turn Fault (ITF) in power transformers is crucial for preventing extensive damage to the windings. However the existing methods based on calculation of fault factors, machine learning methods, and statistical indices require additional terminals or internal tap points, extensive training data and high computational demands, and limited applicability due to non-standardization and specific frequency band selection. To overcome these limitations, this paper presents a novel, non-invasive method for identifying the location and severity of ITFs using only external terminal measurements. Our approach leverages a non-iterative subspace identification algorithm to estimate the pole-zero-gain model from the measured Driving Point Impedance (DPI) frequency response, Zf(s), of a faulty transformer. By solving a matrix equation involving gain, K, series capacitance (Cs), and ground capacitance (Cg), we determine the faulty capacitance, Cf for each winding section. The fault location is then identified by correlating the measured and estimated DPIs, with the section exhibiting the maximum correlation being deemed the faulty disc and its corresponding Cf is the faulty capacitance. This approach accurately identifies the faulty disc and determines the extent of insulation damage caused by the ITF, as validated through simulation and experimental results on various winding types. It paves the way for a more efficient and reliable diagnostic solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信