通过事件触发控制实现四元数值 T-S 模糊惯性神经网络的全局多项式同步:多项式增益法

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jingjing Zhang , Zhouhong Li , Jinde Cao , Mahmoud Abdel-Aty , Xiaofang Meng
{"title":"通过事件触发控制实现四元数值 T-S 模糊惯性神经网络的全局多项式同步:多项式增益法","authors":"Jingjing Zhang ,&nbsp;Zhouhong Li ,&nbsp;Jinde Cao ,&nbsp;Mahmoud Abdel-Aty ,&nbsp;Xiaofang Meng","doi":"10.1016/j.chaos.2025.116403","DOIUrl":null,"url":null,"abstract":"<div><div>This work explores the global polynomial synchronization for a class of quaternion-valued Takagi–Sugeno fuzzy inertial neural networks based on event-triggered control. Firstly, the paper designs the fuzzy event-triggered controller with a polynomial gain, a unique approach to optimize the event-triggered mechanism. The non-reduced order and non-decomposition methods are applied to maintain computational efficiency without introducing new variables. Then, under static and dynamic event-triggered conditions, the system’s global polynomial synchronization is guaranteed by formulating a suitable delay-free Lyapunov functional and using quaternion properties and inequality techniques. Moreover, rigorous derivation is employed to verify a positive lower bound of any event-triggered interval, concluding that the system does not produce Zeno behavior. Finally, a numerical example and the application of image encryption and decryption are presented to strongly validate the reliability of the model and control mechanism in achieving global polynomial synchronization.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":"Article 116403"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global polynomial synchronization for quaternion-valued T–S fuzzy inertial neural networks via event-triggered control: A polynomial gain method\",\"authors\":\"Jingjing Zhang ,&nbsp;Zhouhong Li ,&nbsp;Jinde Cao ,&nbsp;Mahmoud Abdel-Aty ,&nbsp;Xiaofang Meng\",\"doi\":\"10.1016/j.chaos.2025.116403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work explores the global polynomial synchronization for a class of quaternion-valued Takagi–Sugeno fuzzy inertial neural networks based on event-triggered control. Firstly, the paper designs the fuzzy event-triggered controller with a polynomial gain, a unique approach to optimize the event-triggered mechanism. The non-reduced order and non-decomposition methods are applied to maintain computational efficiency without introducing new variables. Then, under static and dynamic event-triggered conditions, the system’s global polynomial synchronization is guaranteed by formulating a suitable delay-free Lyapunov functional and using quaternion properties and inequality techniques. Moreover, rigorous derivation is employed to verify a positive lower bound of any event-triggered interval, concluding that the system does not produce Zeno behavior. Finally, a numerical example and the application of image encryption and decryption are presented to strongly validate the reliability of the model and control mechanism in achieving global polynomial synchronization.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"196 \",\"pages\":\"Article 116403\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925004163\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004163","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类基于事件触发控制的四元数值Takagi-Sugeno模糊惯性神经网络的全局多项式同步。首先,设计了具有多项式增益的模糊事件触发控制器,这是优化事件触发机制的一种独特方法。采用非降阶和非分解方法,在不引入新变量的情况下保持计算效率。然后,在静态和动态事件触发条件下,通过构造合适的无延迟Lyapunov泛函,利用四元数性质和不等式技术,保证了系统的全局多项式同步。此外,采用严格的推导验证了任何事件触发区间的正下界,得出系统不产生芝诺行为的结论。最后,通过一个数值算例和图像加解密的应用,验证了该模型和控制机制在实现全局多项式同步方面的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global polynomial synchronization for quaternion-valued T–S fuzzy inertial neural networks via event-triggered control: A polynomial gain method
This work explores the global polynomial synchronization for a class of quaternion-valued Takagi–Sugeno fuzzy inertial neural networks based on event-triggered control. Firstly, the paper designs the fuzzy event-triggered controller with a polynomial gain, a unique approach to optimize the event-triggered mechanism. The non-reduced order and non-decomposition methods are applied to maintain computational efficiency without introducing new variables. Then, under static and dynamic event-triggered conditions, the system’s global polynomial synchronization is guaranteed by formulating a suitable delay-free Lyapunov functional and using quaternion properties and inequality techniques. Moreover, rigorous derivation is employed to verify a positive lower bound of any event-triggered interval, concluding that the system does not produce Zeno behavior. Finally, a numerical example and the application of image encryption and decryption are presented to strongly validate the reliability of the model and control mechanism in achieving global polynomial synchronization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信