Schrödinger方程非线性扩展的解析孤子解

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Tom Dodge , Peter Schweitzer
{"title":"Schrödinger方程非线性扩展的解析孤子解","authors":"Tom Dodge ,&nbsp;Peter Schweitzer","doi":"10.1016/j.physd.2025.134666","DOIUrl":null,"url":null,"abstract":"<div><div>A method is presented to construct analytic solitary wave solutions in nonlinear extensions of the Schrödinger equation starting from analytic solutions of the ordinary Schrödinger equation. We provide several examples illustrating the method. We rederive three well-known soliton solutions including the <span><math><mi>N</mi></math></span>-dimensional non-relativistic Gausson as well as the one-dimensional <span><math><mrow><mn>1</mn><mo>/</mo><mo>cosh</mo></mrow></math></span>-soliton and a theory with a power-like nonlinearity proportional to <span><math><msup><mrow><mrow><mo>|</mo><mi>Ψ</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn><mi>λ</mi></mrow></msup></math></span> with <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. We also find several new solutions in different nonlinear theories in various space dimensions which, to the best of our knowledge, have not yet been discussed in literature. Our method can be used to construct further nonlinear theories and generalized to relativistic soliton theories, and may have many applications.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"476 ","pages":"Article 134666"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic soliton solutions of nonlinear extensions of the Schrödinger equation\",\"authors\":\"Tom Dodge ,&nbsp;Peter Schweitzer\",\"doi\":\"10.1016/j.physd.2025.134666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A method is presented to construct analytic solitary wave solutions in nonlinear extensions of the Schrödinger equation starting from analytic solutions of the ordinary Schrödinger equation. We provide several examples illustrating the method. We rederive three well-known soliton solutions including the <span><math><mi>N</mi></math></span>-dimensional non-relativistic Gausson as well as the one-dimensional <span><math><mrow><mn>1</mn><mo>/</mo><mo>cosh</mo></mrow></math></span>-soliton and a theory with a power-like nonlinearity proportional to <span><math><msup><mrow><mrow><mo>|</mo><mi>Ψ</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn><mi>λ</mi></mrow></msup></math></span> with <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. We also find several new solutions in different nonlinear theories in various space dimensions which, to the best of our knowledge, have not yet been discussed in literature. Our method can be used to construct further nonlinear theories and generalized to relativistic soliton theories, and may have many applications.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"476 \",\"pages\":\"Article 134666\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925001459\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925001459","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

从普通Schrödinger方程的解析解出发,提出了在Schrödinger方程的非线性扩展中构造解析孤立波解的方法。我们提供了几个例子来说明这种方法。我们重新推导了三个著名的孤子解,包括n维非相对论高斯孤子解和一维1/cosh孤子解,以及一个与|Ψ|2λ与λ>;0成正比的类幂非线性理论。我们还发现了一些新的解决方案在不同的非线性理论在不同的空间维度,据我们所知,还没有在文献中讨论。该方法可用于构造进一步的非线性理论,并推广到相对论性孤子理论,具有广泛的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytic soliton solutions of nonlinear extensions of the Schrödinger equation
A method is presented to construct analytic solitary wave solutions in nonlinear extensions of the Schrödinger equation starting from analytic solutions of the ordinary Schrödinger equation. We provide several examples illustrating the method. We rederive three well-known soliton solutions including the N-dimensional non-relativistic Gausson as well as the one-dimensional 1/cosh-soliton and a theory with a power-like nonlinearity proportional to |Ψ|2λ with λ>0. We also find several new solutions in different nonlinear theories in various space dimensions which, to the best of our knowledge, have not yet been discussed in literature. Our method can be used to construct further nonlinear theories and generalized to relativistic soliton theories, and may have many applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信