Jichao Zhuang , Xiaotong Ding , Zilin Zhang , Xiaoli Zhao , Weigang Li , Ke Feng
{"title":"利用多目标优化强化预报方法预测设备的剩余使用寿命","authors":"Jichao Zhuang , Xiaotong Ding , Zilin Zhang , Xiaoli Zhao , Weigang Li , Ke Feng","doi":"10.1016/j.cie.2025.111116","DOIUrl":null,"url":null,"abstract":"<div><div>Data-driven methods have rapidly advanced equipment degradation monitoring and prognosis. However, traditional deep models rely on weak prior degradation knowledge and may not effectively incorporate degradation damage information. To address this limitation, a Deep Multiobjective Optimization Reinforced Prognostic (MORP) framework is proposed in this paper for equipment health prognosis. Specifically, a priori degradation knowledge and multi-source deep features are combined at both the feature and health indicator (HI) levels. They are then quantified into an unsupervised multi-objective optimization decision. Preceding this step, a multi-degradation criterion and HI generalizability are formulated as a multi-objective function, with the aim of enhancing the generalizability, monotonicity, tendency, and robustness of HIs. Comprehensive Health Indicators (CHIs) are then constructed while retaining the advantages of the Pareto frontier, using a reinforcement learning-guided swarm intelligence optimization method. To address anomalies within CHIs, a HI burr correction method featuring an interpolation-extrapolation term is introduced. Additionally, the prediction of remaining useful life is accomplished through a supervised prognostic scheme. Finally, the proposed methodology is applied to equipment datasets to validate its performance.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"204 ","pages":"Article 111116"},"PeriodicalIF":6.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remaining useful life prediction of equipment using a multiobjective optimization reinforced prognostic approach\",\"authors\":\"Jichao Zhuang , Xiaotong Ding , Zilin Zhang , Xiaoli Zhao , Weigang Li , Ke Feng\",\"doi\":\"10.1016/j.cie.2025.111116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Data-driven methods have rapidly advanced equipment degradation monitoring and prognosis. However, traditional deep models rely on weak prior degradation knowledge and may not effectively incorporate degradation damage information. To address this limitation, a Deep Multiobjective Optimization Reinforced Prognostic (MORP) framework is proposed in this paper for equipment health prognosis. Specifically, a priori degradation knowledge and multi-source deep features are combined at both the feature and health indicator (HI) levels. They are then quantified into an unsupervised multi-objective optimization decision. Preceding this step, a multi-degradation criterion and HI generalizability are formulated as a multi-objective function, with the aim of enhancing the generalizability, monotonicity, tendency, and robustness of HIs. Comprehensive Health Indicators (CHIs) are then constructed while retaining the advantages of the Pareto frontier, using a reinforcement learning-guided swarm intelligence optimization method. To address anomalies within CHIs, a HI burr correction method featuring an interpolation-extrapolation term is introduced. Additionally, the prediction of remaining useful life is accomplished through a supervised prognostic scheme. Finally, the proposed methodology is applied to equipment datasets to validate its performance.</div></div>\",\"PeriodicalId\":55220,\"journal\":{\"name\":\"Computers & Industrial Engineering\",\"volume\":\"204 \",\"pages\":\"Article 111116\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Industrial Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360835225002621\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835225002621","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Remaining useful life prediction of equipment using a multiobjective optimization reinforced prognostic approach
Data-driven methods have rapidly advanced equipment degradation monitoring and prognosis. However, traditional deep models rely on weak prior degradation knowledge and may not effectively incorporate degradation damage information. To address this limitation, a Deep Multiobjective Optimization Reinforced Prognostic (MORP) framework is proposed in this paper for equipment health prognosis. Specifically, a priori degradation knowledge and multi-source deep features are combined at both the feature and health indicator (HI) levels. They are then quantified into an unsupervised multi-objective optimization decision. Preceding this step, a multi-degradation criterion and HI generalizability are formulated as a multi-objective function, with the aim of enhancing the generalizability, monotonicity, tendency, and robustness of HIs. Comprehensive Health Indicators (CHIs) are then constructed while retaining the advantages of the Pareto frontier, using a reinforcement learning-guided swarm intelligence optimization method. To address anomalies within CHIs, a HI burr correction method featuring an interpolation-extrapolation term is introduced. Additionally, the prediction of remaining useful life is accomplished through a supervised prognostic scheme. Finally, the proposed methodology is applied to equipment datasets to validate its performance.
期刊介绍:
Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.