存在子空间干扰和杂波时的不对称自适应检测

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Peiqin Tang , Jing Zhang , Can Huang , Hong Xu , Weijian Liu , Jun Liu
{"title":"存在子空间干扰和杂波时的不对称自适应检测","authors":"Peiqin Tang ,&nbsp;Jing Zhang ,&nbsp;Can Huang ,&nbsp;Hong Xu ,&nbsp;Weijian Liu ,&nbsp;Jun Liu","doi":"10.1016/j.sigpro.2025.110023","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the persymmetric adaptive detection problem of point-like targets in subspace interference and Gaussian clutter. The targets and interference are modeled as subspace random signals that lie in different deterministic subspaces, but with unknown coordinates. By exploiting the persymmetry property of clutter covariance matrix, we introduce two persymmetric detectors according to the Rao and Wald test criteria. Numerical experimental results illustrate that the proposed persymmetric detectors outperform existing methods in some scenarios, especially under conditions of scarce training data. Moreover, these proposed detectors maintain the constant false alarm rate (CFAR) property.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"235 ","pages":"Article 110023"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Persymmetric adaptive detection in the presence of subspace interference and clutter\",\"authors\":\"Peiqin Tang ,&nbsp;Jing Zhang ,&nbsp;Can Huang ,&nbsp;Hong Xu ,&nbsp;Weijian Liu ,&nbsp;Jun Liu\",\"doi\":\"10.1016/j.sigpro.2025.110023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses the persymmetric adaptive detection problem of point-like targets in subspace interference and Gaussian clutter. The targets and interference are modeled as subspace random signals that lie in different deterministic subspaces, but with unknown coordinates. By exploiting the persymmetry property of clutter covariance matrix, we introduce two persymmetric detectors according to the Rao and Wald test criteria. Numerical experimental results illustrate that the proposed persymmetric detectors outperform existing methods in some scenarios, especially under conditions of scarce training data. Moreover, these proposed detectors maintain the constant false alarm rate (CFAR) property.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"235 \",\"pages\":\"Article 110023\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168425001379\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425001379","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

研究了子空间干扰和高斯杂波条件下的点目标超对称自适应检测问题。目标和干扰被建模为子空间随机信号,这些信号位于不同的确定性子空间中,但坐标未知。利用杂波协方差矩阵的超对称性质,根据Rao和Wald检验准则引入了两个超对称检测器。数值实验结果表明,在某些情况下,特别是在训练数据稀缺的情况下,所提出的超对称检测器优于现有方法。此外,这些检测器保持了恒定虚警率(CFAR)的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Persymmetric adaptive detection in the presence of subspace interference and clutter
This paper addresses the persymmetric adaptive detection problem of point-like targets in subspace interference and Gaussian clutter. The targets and interference are modeled as subspace random signals that lie in different deterministic subspaces, but with unknown coordinates. By exploiting the persymmetry property of clutter covariance matrix, we introduce two persymmetric detectors according to the Rao and Wald test criteria. Numerical experimental results illustrate that the proposed persymmetric detectors outperform existing methods in some scenarios, especially under conditions of scarce training data. Moreover, these proposed detectors maintain the constant false alarm rate (CFAR) property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信