Xuan Li , Yanzheng Yang , Pengxiang Zhao , Da Lv , Jun Zhao , Zijian Lu , Ping Huang , Jingyi Zhu , Hao Song , Binqiang Bao , Jalal Kassout , Ruonan Li , Weihua Xu , Hua Zheng
{"title":"推进青藏高原保护区生物多样性保护气候智慧型战略","authors":"Xuan Li , Yanzheng Yang , Pengxiang Zhao , Da Lv , Jun Zhao , Zijian Lu , Ping Huang , Jingyi Zhu , Hao Song , Binqiang Bao , Jalal Kassout , Ruonan Li , Weihua Xu , Hua Zheng","doi":"10.1016/j.geosus.2025.100264","DOIUrl":null,"url":null,"abstract":"<div><div>The Qinghai-Xizang Plateau serves as an extensive gene pool for plateau species and a crucial focal point for global biodiversity conservation. Being a climate-sensitive region, the impacts of climate change have led to habitat loss, population extinction, and ecological imbalances, posing formidable challenges to the sustained effectiveness of existing protected areas. Despite substantial advancements in understanding species distribution, assessing habitat changes, and evaluating the efficiency of protected areas in recent decades, comprehensive evaluations encompassing all protected species are lacking, impeding conservation strategies. In this study, we gathered 137,856 observations, encompassing 2,605 species, and utilized the MaxEnt model to simulate changes in the current distribution patterns of endangered species and suitable habitats under future scenarios. We further proposed a climate smart approach to optimize the boundaries of protected areas in response to climate change. Key findings indicate that (1) the Qinghai-Xizang Plateau harbors 2,605 endangered species, constituting 34.04 % of the total endangered species catalog in China; (2) current high-adaptation habitats of Qinghai-Xizang Plateau cover a mere 7 % of the plateau, showing minimal alteration in protected efficiency under climate change scenarios (0.50 % increase); (3) incorporating the effects of climate change in adjusting protected area boundaries enhances their efficiency by an average of 20.52 %. Our proposed methodology holds promise for safeguarding endangered species on the Qinghai-Xizang Plateau and offers significant implications for analogous regions worldwide.</div></div>","PeriodicalId":52374,"journal":{"name":"Geography and Sustainability","volume":"6 3","pages":"Article 100264"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing a climate smart strategy for biodiversity conservation in protected areas on the Qinghai-Xizang Plateau\",\"authors\":\"Xuan Li , Yanzheng Yang , Pengxiang Zhao , Da Lv , Jun Zhao , Zijian Lu , Ping Huang , Jingyi Zhu , Hao Song , Binqiang Bao , Jalal Kassout , Ruonan Li , Weihua Xu , Hua Zheng\",\"doi\":\"10.1016/j.geosus.2025.100264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Qinghai-Xizang Plateau serves as an extensive gene pool for plateau species and a crucial focal point for global biodiversity conservation. Being a climate-sensitive region, the impacts of climate change have led to habitat loss, population extinction, and ecological imbalances, posing formidable challenges to the sustained effectiveness of existing protected areas. Despite substantial advancements in understanding species distribution, assessing habitat changes, and evaluating the efficiency of protected areas in recent decades, comprehensive evaluations encompassing all protected species are lacking, impeding conservation strategies. In this study, we gathered 137,856 observations, encompassing 2,605 species, and utilized the MaxEnt model to simulate changes in the current distribution patterns of endangered species and suitable habitats under future scenarios. We further proposed a climate smart approach to optimize the boundaries of protected areas in response to climate change. Key findings indicate that (1) the Qinghai-Xizang Plateau harbors 2,605 endangered species, constituting 34.04 % of the total endangered species catalog in China; (2) current high-adaptation habitats of Qinghai-Xizang Plateau cover a mere 7 % of the plateau, showing minimal alteration in protected efficiency under climate change scenarios (0.50 % increase); (3) incorporating the effects of climate change in adjusting protected area boundaries enhances their efficiency by an average of 20.52 %. Our proposed methodology holds promise for safeguarding endangered species on the Qinghai-Xizang Plateau and offers significant implications for analogous regions worldwide.</div></div>\",\"PeriodicalId\":52374,\"journal\":{\"name\":\"Geography and Sustainability\",\"volume\":\"6 3\",\"pages\":\"Article 100264\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geography and Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666683925000033\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666683925000033","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Advancing a climate smart strategy for biodiversity conservation in protected areas on the Qinghai-Xizang Plateau
The Qinghai-Xizang Plateau serves as an extensive gene pool for plateau species and a crucial focal point for global biodiversity conservation. Being a climate-sensitive region, the impacts of climate change have led to habitat loss, population extinction, and ecological imbalances, posing formidable challenges to the sustained effectiveness of existing protected areas. Despite substantial advancements in understanding species distribution, assessing habitat changes, and evaluating the efficiency of protected areas in recent decades, comprehensive evaluations encompassing all protected species are lacking, impeding conservation strategies. In this study, we gathered 137,856 observations, encompassing 2,605 species, and utilized the MaxEnt model to simulate changes in the current distribution patterns of endangered species and suitable habitats under future scenarios. We further proposed a climate smart approach to optimize the boundaries of protected areas in response to climate change. Key findings indicate that (1) the Qinghai-Xizang Plateau harbors 2,605 endangered species, constituting 34.04 % of the total endangered species catalog in China; (2) current high-adaptation habitats of Qinghai-Xizang Plateau cover a mere 7 % of the plateau, showing minimal alteration in protected efficiency under climate change scenarios (0.50 % increase); (3) incorporating the effects of climate change in adjusting protected area boundaries enhances their efficiency by an average of 20.52 %. Our proposed methodology holds promise for safeguarding endangered species on the Qinghai-Xizang Plateau and offers significant implications for analogous regions worldwide.
期刊介绍:
Geography and Sustainability serves as a central hub for interdisciplinary research and education aimed at promoting sustainable development from an integrated geography perspective. By bridging natural and human sciences, the journal fosters broader analysis and innovative thinking on global and regional sustainability issues.
Geography and Sustainability welcomes original, high-quality research articles, review articles, short communications, technical comments, perspective articles and editorials on the following themes:
Geographical Processes: Interactions with and between water, soil, atmosphere and the biosphere and their spatio-temporal variations;
Human-Environmental Systems: Interactions between humans and the environment, resilience of socio-ecological systems and vulnerability;
Ecosystem Services and Human Wellbeing: Ecosystem structure, processes, services and their linkages with human wellbeing;
Sustainable Development: Theory, practice and critical challenges in sustainable development.