基于结构的选择性MraY抑制剂预测

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Sonali Chavan, Thomas Olsson, Gunnar Nyman
{"title":"基于结构的选择性MraY抑制剂预测","authors":"Sonali Chavan,&nbsp;Thomas Olsson,&nbsp;Gunnar Nyman","doi":"10.1016/j.jmgm.2025.109053","DOIUrl":null,"url":null,"abstract":"<div><div>Antibiotic resistance is becoming a growing concern of public health and hence there is an increasing demand for developing better antibiotic strategies. One such strategy includes targeting the bacterial cell wall, thereby killing the bacteria. A bacterial transmembrane enzyme MraY (Phospho-N-acetylmuramoyl-pentapeptide translocase), is considered to be a promising target for developing new antibiotics since it is involved in cell wall synthesis. Tunicamycin is an antibiotic known to inhibit the function of MraY. However, it shows cross-reactivity with the structurally homologous human enzyme hGPT (GlcNAc-1-P-transferase), which therefore calls for antibiotics with MraY selectivity. In the present computational work, we identified selective MraY inhibitors, where virtual screening of 45,411 compounds was carried out, followed by molecular dynamics simulations to check the stability of key inhibitory interactions across MraY and hGPT. From five shortlisted tentative inhibitors, comparative structural interaction analysis for both MraY and hGPT suggested three compounds as potential selective MraY inhibitors.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"138 ","pages":"Article 109053"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure based prediction of selective MraY inhibitors\",\"authors\":\"Sonali Chavan,&nbsp;Thomas Olsson,&nbsp;Gunnar Nyman\",\"doi\":\"10.1016/j.jmgm.2025.109053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Antibiotic resistance is becoming a growing concern of public health and hence there is an increasing demand for developing better antibiotic strategies. One such strategy includes targeting the bacterial cell wall, thereby killing the bacteria. A bacterial transmembrane enzyme MraY (Phospho-N-acetylmuramoyl-pentapeptide translocase), is considered to be a promising target for developing new antibiotics since it is involved in cell wall synthesis. Tunicamycin is an antibiotic known to inhibit the function of MraY. However, it shows cross-reactivity with the structurally homologous human enzyme hGPT (GlcNAc-1-P-transferase), which therefore calls for antibiotics with MraY selectivity. In the present computational work, we identified selective MraY inhibitors, where virtual screening of 45,411 compounds was carried out, followed by molecular dynamics simulations to check the stability of key inhibitory interactions across MraY and hGPT. From five shortlisted tentative inhibitors, comparative structural interaction analysis for both MraY and hGPT suggested three compounds as potential selective MraY inhibitors.</div></div>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":\"138 \",\"pages\":\"Article 109053\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1093326325001135\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326325001135","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

抗生素耐药性正在成为公共卫生日益关注的问题,因此对制定更好的抗生素战略的需求日益增加。其中一种策略包括瞄准细菌细胞壁,从而杀死细菌。细菌跨膜酶MraY (Phospho-N-acetylmuramoyl-pentapeptide translocase)由于参与细胞壁合成,被认为是开发新抗生素的一个有希望的靶点。Tunicamycin是一种已知能抑制MraY功能的抗生素。然而,它与结构上同源的人酶hGPT (glcnac -1- p转移酶)具有交叉反应性,因此需要具有MraY选择性的抗生素。在目前的计算工作中,我们确定了选择性MraY抑制剂,其中进行了45,411种化合物的虚拟筛选,然后进行分子动力学模拟以检查MraY和hGPT之间关键抑制相互作用的稳定性。从五个候选的暂定抑制剂中,MraY和hGPT的结构相互作用比较分析表明,有三种化合物是潜在的选择性MraY抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structure based prediction of selective MraY inhibitors

Structure based prediction of selective MraY inhibitors
Antibiotic resistance is becoming a growing concern of public health and hence there is an increasing demand for developing better antibiotic strategies. One such strategy includes targeting the bacterial cell wall, thereby killing the bacteria. A bacterial transmembrane enzyme MraY (Phospho-N-acetylmuramoyl-pentapeptide translocase), is considered to be a promising target for developing new antibiotics since it is involved in cell wall synthesis. Tunicamycin is an antibiotic known to inhibit the function of MraY. However, it shows cross-reactivity with the structurally homologous human enzyme hGPT (GlcNAc-1-P-transferase), which therefore calls for antibiotics with MraY selectivity. In the present computational work, we identified selective MraY inhibitors, where virtual screening of 45,411 compounds was carried out, followed by molecular dynamics simulations to check the stability of key inhibitory interactions across MraY and hGPT. From five shortlisted tentative inhibitors, comparative structural interaction analysis for both MraY and hGPT suggested three compounds as potential selective MraY inhibitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of molecular graphics & modelling
Journal of molecular graphics & modelling 生物-计算机:跨学科应用
CiteScore
5.50
自引率
6.90%
发文量
216
审稿时长
35 days
期刊介绍: The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design. As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信