{"title":"减少使用重活性材料的热充电电池的内阻","authors":"Yicheng Bao , Ren Shimazu , Yutaka Moritomo","doi":"10.1016/j.fub.2025.100063","DOIUrl":null,"url":null,"abstract":"<div><div>Thermorechargeable battery (TB), which can be charged by temperature change <span><math><mrow><mi>Δ</mi><mi>T</mi></mrow></math></span> via difference in the electrochemical Seebeck coefficient <span><math><mi>α</mi></math></span> between the cathode and anode, is a promising energy harvester. In order to put TB into practical use in society, it is necessary to increase the maximum output power (<span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span> = <span><math><mfrac><mrow><msubsup><mrow><mi>V</mi></mrow><mrow><mi>TB</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow><mrow><mn>4</mn><mi>R</mi></mrow></mfrac></math></span>, where <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>TB</mi></mrow></msub></math></span> and <span><math><mi>R</mi></math></span> are the thermal voltage and internal resistance) per unit area of electrode. Here, we investigated <span><math><mi>R</mi></math></span> and its components in laminate film type Na<sub>1.48</sub>Co[Fe(CN)<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>]<sub>0.87</sub> (Co-PBA)/Na<sub>1.76</sub>Ni[Fe(CN)<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>]<sub>0.94</sub> (Ni-PBA) TB against active material weight <span><math><mi>m</mi></math></span>. We found that the charge-transfer resistance <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>ct</mi></mrow></msub></math></span> at 20 °C steeply decreases from 60 <span><math><mi>Ω</mi></math></span>/cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> in TB with light <span><math><mi>m</mi></math></span> to 7 <span><math><mi>Ω</mi></math></span>/cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> in TB with heavy <span><math><mi>m</mi></math></span>, causing significant reduction of <span><math><mi>R</mi></math></span>. Reflecting the reduced <span><math><mi>R</mi></math></span>, <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span> at <span><math><mrow><mi>Δ</mi><mi>T</mi></mrow></math></span> = 30 K significantly increases from 2.5 <span><math><mrow><mi>μ</mi><msup><mrow><mi>W/cm</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> to 18.8 <span><math><mrow><mi>μ</mi><msup><mrow><mi>W/cm</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> with increases in <span><math><mi>m</mi></math></span>.</div></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"6 ","pages":"Article 100063"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced internal resistance in thermorechargeable battery with heavy active materials\",\"authors\":\"Yicheng Bao , Ren Shimazu , Yutaka Moritomo\",\"doi\":\"10.1016/j.fub.2025.100063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermorechargeable battery (TB), which can be charged by temperature change <span><math><mrow><mi>Δ</mi><mi>T</mi></mrow></math></span> via difference in the electrochemical Seebeck coefficient <span><math><mi>α</mi></math></span> between the cathode and anode, is a promising energy harvester. In order to put TB into practical use in society, it is necessary to increase the maximum output power (<span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span> = <span><math><mfrac><mrow><msubsup><mrow><mi>V</mi></mrow><mrow><mi>TB</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow><mrow><mn>4</mn><mi>R</mi></mrow></mfrac></math></span>, where <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>TB</mi></mrow></msub></math></span> and <span><math><mi>R</mi></math></span> are the thermal voltage and internal resistance) per unit area of electrode. Here, we investigated <span><math><mi>R</mi></math></span> and its components in laminate film type Na<sub>1.48</sub>Co[Fe(CN)<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>]<sub>0.87</sub> (Co-PBA)/Na<sub>1.76</sub>Ni[Fe(CN)<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>]<sub>0.94</sub> (Ni-PBA) TB against active material weight <span><math><mi>m</mi></math></span>. We found that the charge-transfer resistance <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>ct</mi></mrow></msub></math></span> at 20 °C steeply decreases from 60 <span><math><mi>Ω</mi></math></span>/cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> in TB with light <span><math><mi>m</mi></math></span> to 7 <span><math><mi>Ω</mi></math></span>/cm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> in TB with heavy <span><math><mi>m</mi></math></span>, causing significant reduction of <span><math><mi>R</mi></math></span>. Reflecting the reduced <span><math><mi>R</mi></math></span>, <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span> at <span><math><mrow><mi>Δ</mi><mi>T</mi></mrow></math></span> = 30 K significantly increases from 2.5 <span><math><mrow><mi>μ</mi><msup><mrow><mi>W/cm</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> to 18.8 <span><math><mrow><mi>μ</mi><msup><mrow><mi>W/cm</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> with increases in <span><math><mi>m</mi></math></span>.</div></div>\",\"PeriodicalId\":100560,\"journal\":{\"name\":\"Future Batteries\",\"volume\":\"6 \",\"pages\":\"Article 100063\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Batteries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950264025000425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950264025000425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reduced internal resistance in thermorechargeable battery with heavy active materials
Thermorechargeable battery (TB), which can be charged by temperature change via difference in the electrochemical Seebeck coefficient between the cathode and anode, is a promising energy harvester. In order to put TB into practical use in society, it is necessary to increase the maximum output power ( = , where and are the thermal voltage and internal resistance) per unit area of electrode. Here, we investigated and its components in laminate film type Na1.48Co[Fe(CN)]0.87 (Co-PBA)/Na1.76Ni[Fe(CN)]0.94 (Ni-PBA) TB against active material weight . We found that the charge-transfer resistance at 20 °C steeply decreases from 60 /cm in TB with light to 7 /cm in TB with heavy , causing significant reduction of . Reflecting the reduced , at = 30 K significantly increases from 2.5 to 18.8 with increases in .