{"title":"椭圆曲线的嵌套五根根恒等式","authors":"Joseph Tonien","doi":"10.1016/j.jaca.2025.100032","DOIUrl":null,"url":null,"abstract":"<div><div>Ramanujan discovered the following elegant identity involving cube roots:<span><span><span><math><msqrt><mrow><mi>m</mi><mroot><mrow><mn>4</mn><mo>(</mo><mi>m</mi><mo>−</mo><mn>2</mn><mi>n</mi><mo>)</mo></mrow><mrow><mn>3</mn></mrow></mroot><mo>+</mo><mi>n</mi><mroot><mrow><mn>4</mn><mi>m</mi><mo>+</mo><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot></mrow></msqrt><mo>=</mo><mo>±</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>(</mo><mroot><mrow><msup><mrow><mo>(</mo><mn>4</mn><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mroot><mo>+</mo><mroot><mrow><mn>4</mn><mo>(</mo><mi>m</mi><mo>−</mo><mn>2</mn><mi>n</mi><mo>)</mo><mo>(</mo><mn>4</mn><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>3</mn></mrow></mroot><mo>−</mo><mroot><mrow><mn>2</mn><msup><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mn>2</mn><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mroot><mo>)</mo><mo>.</mo></math></span></span></span></div><div>The goal of this paper is to derive nested fifth root radical identities in the form of<span><span><span><math><msqrt><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mroot><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mroot><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot></mrow></msqrt><mo>=</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mroot><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mroot><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mroot><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msub><mroot><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>5</mn></mrow></msub><mroot><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>5</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>.</mo></math></span></span></span> We show that these identities can be derived from a specific family of elliptic curves. Furthermore, we include the SageMath code for computing these expressions.</div></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"13 ","pages":"Article 100032"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nested fifth root radical identities from elliptic curves\",\"authors\":\"Joseph Tonien\",\"doi\":\"10.1016/j.jaca.2025.100032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ramanujan discovered the following elegant identity involving cube roots:<span><span><span><math><msqrt><mrow><mi>m</mi><mroot><mrow><mn>4</mn><mo>(</mo><mi>m</mi><mo>−</mo><mn>2</mn><mi>n</mi><mo>)</mo></mrow><mrow><mn>3</mn></mrow></mroot><mo>+</mo><mi>n</mi><mroot><mrow><mn>4</mn><mi>m</mi><mo>+</mo><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mroot></mrow></msqrt><mo>=</mo><mo>±</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>(</mo><mroot><mrow><msup><mrow><mo>(</mo><mn>4</mn><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mroot><mo>+</mo><mroot><mrow><mn>4</mn><mo>(</mo><mi>m</mi><mo>−</mo><mn>2</mn><mi>n</mi><mo>)</mo><mo>(</mo><mn>4</mn><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>3</mn></mrow></mroot><mo>−</mo><mroot><mrow><mn>2</mn><msup><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mn>2</mn><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mroot><mo>)</mo><mo>.</mo></math></span></span></span></div><div>The goal of this paper is to derive nested fifth root radical identities in the form of<span><span><span><math><msqrt><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mroot><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mroot><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot></mrow></msqrt><mo>=</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mroot><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mroot><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mroot><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msub><mroot><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>5</mn></mrow></msub><mroot><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>5</mn></mrow></msub></mrow><mrow><mn>5</mn></mrow></mroot><mo>.</mo></math></span></span></span> We show that these identities can be derived from a specific family of elliptic curves. Furthermore, we include the SageMath code for computing these expressions.</div></div>\",\"PeriodicalId\":100767,\"journal\":{\"name\":\"Journal of Computational Algebra\",\"volume\":\"13 \",\"pages\":\"Article 100032\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772827725000038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827725000038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nested fifth root radical identities from elliptic curves
Ramanujan discovered the following elegant identity involving cube roots:
The goal of this paper is to derive nested fifth root radical identities in the form of We show that these identities can be derived from a specific family of elliptic curves. Furthermore, we include the SageMath code for computing these expressions.