在特殊欧几里得群 SE(3) 上使用广义 B-样条插值的几何精确梁有限元

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Kunming Ren , Tingting Yuan , Jinyang Liu
{"title":"在特殊欧几里得群 SE(3) 上使用广义 B-样条插值的几何精确梁有限元","authors":"Kunming Ren ,&nbsp;Tingting Yuan ,&nbsp;Jinyang Liu","doi":"10.1016/j.cma.2025.117979","DOIUrl":null,"url":null,"abstract":"<div><div>This work aims to address the challenge of achieving continuity in beam element interpolation by introducing a geometrically exact beam finite element based on generalized B-spline interpolation on the special Euclidean group <span><math><mrow><mi>S</mi><mi>E</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>. The beam’s configuration is represented within the <span><math><mrow><mi>S</mi><mi>E</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span> framework and interpolated using a generalized B-spline approach, enabling high-order interpolation with enhanced <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> continuity. The interpolation is implemented through an extension of the classical De Boor algorithm to Lie groups via the pyramid algorithm. A systematic method is proposed for computing derivatives and linearizations essential for finite element formulations. Both static and dynamic equilibrium equations are derived on <span><math><mrow><mi>S</mi><mi>E</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>, and the finite element formulations are established accordingly. Numerical examples validate the proposed element, confirming its correctness and adherence to critical properties, including objectivity, path-independence, and the absence of locking. The combination of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> continuity and the high degree of the interpolation substantially enhances the convergence performance. In particular, the degree-2 beam element achieves improved accuracy with sixth-order convergence rates when the degrees of freedom are relatively low. These characteristics make the proposed element highly suitable for high-accuracy simulations of beam structures undergoing large deformations and rotations.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"441 ","pages":"Article 117979"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometrically exact beam finite element with generalized B-spline interpolation on the special Euclidean group SE(3)\",\"authors\":\"Kunming Ren ,&nbsp;Tingting Yuan ,&nbsp;Jinyang Liu\",\"doi\":\"10.1016/j.cma.2025.117979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work aims to address the challenge of achieving continuity in beam element interpolation by introducing a geometrically exact beam finite element based on generalized B-spline interpolation on the special Euclidean group <span><math><mrow><mi>S</mi><mi>E</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>. The beam’s configuration is represented within the <span><math><mrow><mi>S</mi><mi>E</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span> framework and interpolated using a generalized B-spline approach, enabling high-order interpolation with enhanced <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> continuity. The interpolation is implemented through an extension of the classical De Boor algorithm to Lie groups via the pyramid algorithm. A systematic method is proposed for computing derivatives and linearizations essential for finite element formulations. Both static and dynamic equilibrium equations are derived on <span><math><mrow><mi>S</mi><mi>E</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>, and the finite element formulations are established accordingly. Numerical examples validate the proposed element, confirming its correctness and adherence to critical properties, including objectivity, path-independence, and the absence of locking. The combination of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> continuity and the high degree of the interpolation substantially enhances the convergence performance. In particular, the degree-2 beam element achieves improved accuracy with sixth-order convergence rates when the degrees of freedom are relatively low. These characteristics make the proposed element highly suitable for high-accuracy simulations of beam structures undergoing large deformations and rotations.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"441 \",\"pages\":\"Article 117979\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782525002518\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525002518","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本工作旨在通过在特殊欧几里得群SE(3)上引入基于广义b样条插值的几何精确梁有限元来解决在梁单元插值中实现连续性的挑战。梁的结构在SE(3)框架内表示,并使用广义b样条方法进行插值,从而实现具有增强C1连续性的高阶插值。通过金字塔算法将经典De Boor算法扩展到李群,实现了插值。提出了一种系统的方法来计算有限元公式中所必需的导数和线性化。在SE(3)上推导了静力平衡方程和动平衡方程,并建立了相应的有限元公式。数值示例验证了所提出的元素,确认了其正确性和遵守关键属性,包括客观性,路径独立性和无锁定。C1连续性和高插值度的结合大大提高了收敛性能。特别是在自由度较低的情况下,二阶梁单元以六阶收敛速率获得了更高的精度。这些特性使得所提出的单元非常适合于大变形和大旋转的梁结构的高精度模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometrically exact beam finite element with generalized B-spline interpolation on the special Euclidean group SE(3)
This work aims to address the challenge of achieving continuity in beam element interpolation by introducing a geometrically exact beam finite element based on generalized B-spline interpolation on the special Euclidean group SE(3). The beam’s configuration is represented within the SE(3) framework and interpolated using a generalized B-spline approach, enabling high-order interpolation with enhanced C1 continuity. The interpolation is implemented through an extension of the classical De Boor algorithm to Lie groups via the pyramid algorithm. A systematic method is proposed for computing derivatives and linearizations essential for finite element formulations. Both static and dynamic equilibrium equations are derived on SE(3), and the finite element formulations are established accordingly. Numerical examples validate the proposed element, confirming its correctness and adherence to critical properties, including objectivity, path-independence, and the absence of locking. The combination of C1 continuity and the high degree of the interpolation substantially enhances the convergence performance. In particular, the degree-2 beam element achieves improved accuracy with sixth-order convergence rates when the degrees of freedom are relatively low. These characteristics make the proposed element highly suitable for high-accuracy simulations of beam structures undergoing large deformations and rotations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信