非凸多边形网格上Stokes方程的自稳定弱Galerkin有限元方法

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chunmei Wang , Shangyou Zhang
{"title":"非凸多边形网格上Stokes方程的自稳定弱Galerkin有限元方法","authors":"Chunmei Wang ,&nbsp;Shangyou Zhang","doi":"10.1016/j.jcp.2025.114006","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces an auto-stabilized weak Galerkin (WG) finite element method for solving Stokes equations without relying on traditional stabilizers. The proposed WG method accommodates both convex and non-convex polytopal elements in finite element partitions, leveraging bubble functions as a key analytical tool. The simplified WG method is symmetric and positive definite, and optimal-order error estimates are derived for WG approximations in both the discrete <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm and the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"533 ","pages":"Article 114006"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auto-stabilized weak Galerkin finite element methods for Stokes equations on non-convex polytopal meshes\",\"authors\":\"Chunmei Wang ,&nbsp;Shangyou Zhang\",\"doi\":\"10.1016/j.jcp.2025.114006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces an auto-stabilized weak Galerkin (WG) finite element method for solving Stokes equations without relying on traditional stabilizers. The proposed WG method accommodates both convex and non-convex polytopal elements in finite element partitions, leveraging bubble functions as a key analytical tool. The simplified WG method is symmetric and positive definite, and optimal-order error estimates are derived for WG approximations in both the discrete <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm and the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"533 \",\"pages\":\"Article 114006\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002199912500289X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002199912500289X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种自稳定弱伽辽金(WG)有限元法,用于求解Stokes方程而不依赖于传统的稳定器。提出的WG方法在有限元分区中容纳凸和非凸多边形元素,利用气泡函数作为关键的分析工具。简化后的WG方法是对称的和正定的,并在离散H1范数和L2范数下导出了WG近似的最优阶误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auto-stabilized weak Galerkin finite element methods for Stokes equations on non-convex polytopal meshes
This paper introduces an auto-stabilized weak Galerkin (WG) finite element method for solving Stokes equations without relying on traditional stabilizers. The proposed WG method accommodates both convex and non-convex polytopal elements in finite element partitions, leveraging bubble functions as a key analytical tool. The simplified WG method is symmetric and positive definite, and optimal-order error estimates are derived for WG approximations in both the discrete H1 norm and the L2 norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信