分数阶曲线积分泛函的变分不等式分析

IF 1.4 Q2 MATHEMATICS, APPLIED
Octavian Postavaru , Antonela Toma , Savin Treanţă
{"title":"分数阶曲线积分泛函的变分不等式分析","authors":"Octavian Postavaru ,&nbsp;Antonela Toma ,&nbsp;Savin Treanţă","doi":"10.1016/j.rinam.2025.100572","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines weak sharp solutions for a category of variational inequalities incorporating functionals based on fractional curvilinear integrals, expanding the conventional approach with concepts from fractional calculus. Furthermore, by using the sufficiency property of the minimum principle, the paper establishes and proves results on the weak sharpness characteristic of the solution collection for this type of inequality constraints. An application is provided to illustrate the main theoretical findings.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100572"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of variational inequalities with fractional curvilinear integral functionals\",\"authors\":\"Octavian Postavaru ,&nbsp;Antonela Toma ,&nbsp;Savin Treanţă\",\"doi\":\"10.1016/j.rinam.2025.100572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines weak sharp solutions for a category of variational inequalities incorporating functionals based on fractional curvilinear integrals, expanding the conventional approach with concepts from fractional calculus. Furthermore, by using the sufficiency property of the minimum principle, the paper establishes and proves results on the weak sharpness characteristic of the solution collection for this type of inequality constraints. An application is provided to illustrate the main theoretical findings.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"26 \",\"pages\":\"Article 100572\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了一类基于分数阶曲线积分的变分不等式的弱尖锐解,用分数阶微积分的概念扩展了传统的方法。利用最小原则的充分性,建立并证明了这类不等式约束解集的弱锐性特征。最后给出了一个应用来说明主要的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of variational inequalities with fractional curvilinear integral functionals
This study examines weak sharp solutions for a category of variational inequalities incorporating functionals based on fractional curvilinear integrals, expanding the conventional approach with concepts from fractional calculus. Furthermore, by using the sufficiency property of the minimum principle, the paper establishes and proves results on the weak sharpness characteristic of the solution collection for this type of inequality constraints. An application is provided to illustrate the main theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信