{"title":"一种新的深入的“静态-动态”脂质组学工作流程揭示肝细胞癌中的脂质重编程","authors":"Jianlei Yan , Yiwen Zhang , Xiaoxue Zheng, Zhengkun Tang, Wei Guo, Saiyu Li, Jingjing Li, Huarong Xu, Qing Li, Qian Zhang","doi":"10.1016/j.jpba.2025.116880","DOIUrl":null,"url":null,"abstract":"<div><div>Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally, and with current treatments proving less effective, there is an urgent need for specific biomarkers and therapeutic targets. Lipid metabolism reprogramming is a crucial cancer hallmark, yet comprehensive studies on lipid metabolic fluxes remain limited. In this study, combined with non-targeted lipidomics, a comprehensive workflow for stable isotope tracing lipidomics was established to analyze changes in lipid levels of HepG2 cells and LO2 cells from both static and dynamic perspectives. Through the screening of differential metabolites and the enrichment analysis of lipid metabolic pathways, the most significant differential metabolic pathways were found. Finally, the TCGA and CPTAC databases were utilized to analyze the gene expression levels and protein expression levels of pivotal enzymes in the differential metabolic pathways, and these findings were verified by Western Blotting experiments. The results demonstrated that the lipid metabolism of HCC was disordered, and the metabolic pathways that caused lipid changes in HCC were mainly glycerophospholipid metabolism and sphingolipid signaling pathway. LPCAT1 and SMPD1 played a crucial role in the reprogramming of lipid metabolism in HCC. The established \"static-dynamic\" lipidomics workflow improves the coverage and accuracy of dynamic lipid monitoring, elucidating the roles of lipids in physiological and pathological processes, providing tools for studying lipid function, and offering new perspectives on the pathogenesis of HCC as well as the identification of drug targets.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"262 ","pages":"Article 116880"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel in-depth “static- dynamic” lipidomics workflow to reveal lipids reprogramming in hepatocellular carcinoma\",\"authors\":\"Jianlei Yan , Yiwen Zhang , Xiaoxue Zheng, Zhengkun Tang, Wei Guo, Saiyu Li, Jingjing Li, Huarong Xu, Qing Li, Qian Zhang\",\"doi\":\"10.1016/j.jpba.2025.116880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally, and with current treatments proving less effective, there is an urgent need for specific biomarkers and therapeutic targets. Lipid metabolism reprogramming is a crucial cancer hallmark, yet comprehensive studies on lipid metabolic fluxes remain limited. In this study, combined with non-targeted lipidomics, a comprehensive workflow for stable isotope tracing lipidomics was established to analyze changes in lipid levels of HepG2 cells and LO2 cells from both static and dynamic perspectives. Through the screening of differential metabolites and the enrichment analysis of lipid metabolic pathways, the most significant differential metabolic pathways were found. Finally, the TCGA and CPTAC databases were utilized to analyze the gene expression levels and protein expression levels of pivotal enzymes in the differential metabolic pathways, and these findings were verified by Western Blotting experiments. The results demonstrated that the lipid metabolism of HCC was disordered, and the metabolic pathways that caused lipid changes in HCC were mainly glycerophospholipid metabolism and sphingolipid signaling pathway. LPCAT1 and SMPD1 played a crucial role in the reprogramming of lipid metabolism in HCC. The established \\\"static-dynamic\\\" lipidomics workflow improves the coverage and accuracy of dynamic lipid monitoring, elucidating the roles of lipids in physiological and pathological processes, providing tools for studying lipid function, and offering new perspectives on the pathogenesis of HCC as well as the identification of drug targets.</div></div>\",\"PeriodicalId\":16685,\"journal\":{\"name\":\"Journal of pharmaceutical and biomedical analysis\",\"volume\":\"262 \",\"pages\":\"Article 116880\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical and biomedical analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0731708525002213\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708525002213","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A novel in-depth “static- dynamic” lipidomics workflow to reveal lipids reprogramming in hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally, and with current treatments proving less effective, there is an urgent need for specific biomarkers and therapeutic targets. Lipid metabolism reprogramming is a crucial cancer hallmark, yet comprehensive studies on lipid metabolic fluxes remain limited. In this study, combined with non-targeted lipidomics, a comprehensive workflow for stable isotope tracing lipidomics was established to analyze changes in lipid levels of HepG2 cells and LO2 cells from both static and dynamic perspectives. Through the screening of differential metabolites and the enrichment analysis of lipid metabolic pathways, the most significant differential metabolic pathways were found. Finally, the TCGA and CPTAC databases were utilized to analyze the gene expression levels and protein expression levels of pivotal enzymes in the differential metabolic pathways, and these findings were verified by Western Blotting experiments. The results demonstrated that the lipid metabolism of HCC was disordered, and the metabolic pathways that caused lipid changes in HCC were mainly glycerophospholipid metabolism and sphingolipid signaling pathway. LPCAT1 and SMPD1 played a crucial role in the reprogramming of lipid metabolism in HCC. The established "static-dynamic" lipidomics workflow improves the coverage and accuracy of dynamic lipid monitoring, elucidating the roles of lipids in physiological and pathological processes, providing tools for studying lipid function, and offering new perspectives on the pathogenesis of HCC as well as the identification of drug targets.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.